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An Improved Function for Fitting Sedimentation Velocity Data for
Low-Molecular-Weight Solutes

John S. Philo
Protein Chemistry Department, Amgen Inc., Thousand Oaks, California 91320 USA

ABSTRACT Many traditional approaches to the analysis of sedimentation velocity data work poorly with data for low-
molecular-weight solutes, which have sedimentation boundaries that are severely broadened by diffusion. An approach that
has previously had some success is to directly fit these broad boundaries to approximate solutions of the Lamm equation that
directly account for the high diffusion. However, none of the available approximate solutions work well at times both early and
late in the run, or give boundary shapes that are highly accurate, especially for species of molecular weight < 10,000. An
improved fitting function has been developed to overcome some of these limitations. The new function adds two correction
terms to the Fujita-MacCosham solution. The optimum coefficients for these new correction terms were determined by a
least-squares approach. The accuracy and limitations of fitting with this new function were tested against synthetic data sets
obtained by finite-element methods, for analysis of samples containing either single species or several noninteracting
species. We also compare the strengths and weaknesses of this method of analysis, and its ability to work with noisy data,
relative to recently developed time-derivative methodologies.

INTRODUCTION

Sedimentation velocity can be a powerful tool for analysis
of the size and shape of macromolecules in solution, and for
analysis of samples containing many species. The recent
advent of improved analytical ultracentrifuges has brought
about a resurgence of use of sedimentation techniques, and
this, along with on-line digital data acquisition, has also
fostered development of new and improved methods of data
analysis (Hansen et al., 1994). Driven largely by the bio-
technology industry, there is also recent interest in using
sedimentation velocity to characterize proteins such as cy-
tokines and growth factors with relatively low molecular
weights (~5000 to 40,000) and to provide information
about their conformation, molecular weight, and homoge-
neity. In addition, a number of important small structural
modules with M, ~5000-15,000 have now been shown to
occur in many proteins (EGF modules, SH2, SH3, and PTP
domains, PH domains, etc.). Such modules are often in-
volved in protein-protein interactions and/or key signaling
pathways, and it may therefore be useful to characterize
their conformation (and possible changes in conformation
after binding peptide ligands) by sedimentation velocity.
Unfortunately, the large diffusion coefficient of such
low-molecular-weight solutes causes them to produce very
broad sedimentation boundaries, even at the highest rotor
speeds. Such broad boundaries make it very difficult to
assess whether multiple species may be present. The high
diffusion even makes it difficult to obtain an accurate sed-
imentation coefficient by traditional approaches such as the
second-moment method, because there is only a very lim-
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ited range of boundary movement during the time when the
method is applicable (i.e., after the meniscus is clear but
while there is still a plateau region). The newer time-
derivative “dc/df” techniques (Stafford, 1994) can certainly
be applied in such situations, but as we will discuss below,
it is necessary to make significant corrections to the sedi-
mentation coefficients when this type of analysis is applied
to such small proteins.

One approach to overcoming the problems caused by
high diffusion is to incorporate the diffusion coefficient, and
its effect on boundary shape, directly into the analysis by
fitting the raw data to an appropriate approximate solution
of the Lamm equation, with both the sedimentation and
diffusion coefficients as fitting parameters. This approach
was first applied to single data sets and single species some
time ago (Holladay, 1980), using a fitting function with
approximations that are only accurate early in the run. More
recently we rediscovered a similar approach and extended it
using a global analysis of many data sets, and showed that
it is applicable to samples containing a small number of
noninteracting species (Philo, 1994). However, the Faxen-
type approximate solution of the Lamm equation that was
employed (equation 2.94 from Fujita, 1975, which we call
the “Fujita function”) does not treat the effects of restricted
diffusion at the meniscus and essentially assumes that the
meniscus is rapidly cleared, forming an infinitely sharp
boundary at the start of the run. This is certainly not a good
approximation for very low M, solutes, for which the me-
niscus is cleared very slowly, and even for higher M, species
it restricts that method to use at times later in the run when
the effects of the meniscus are smaller. Furthermore, be-
cause of the effects of the meniscus, the shape of this
function is not an accurate representation of the shape of the
boundaries, which is of concern because the ability of this
method to detect and resolve the presence of more than one
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species is based on improved matching of the boundary
shapes as more species are included in the analysis.

This paper describes the development of a new fitting
function that gives improved accuracy at low molecular
weights, which is applicable both early and late in the run,
and which is reasonably fast to compute. Its performance is
then compared to that of the previous function for both
single and two-species fits. The possibility of resolving
even more species is then explored, as is the ability of this
technique to cope with noisy data. Other strengths and
weaknesses of the direct boundary fitting method are dis-
cussed, as well its advantages and disadvantages relative to
time-derivative analysis methods.

METHODS

The nonlinear least-squares fitting techniques and the finite-element com-
putations of simulated data sets were carried out as previously described
(Philo, 1994). All finite-element simulations were done using a calculation
time increment of 1 s and with the cell divided into radial increments of
0.003 cm. Time-derivative analysis was done using the program DCDT
provided by the National Analytical Ultracentrifugation Facility, and the
resulting g(s*) distributions were then transferred into Microcal ORIGIN
4.0 for fitting of peaks to Gaussians.

RESULTS AND DISCUSSION
Tests of existing solutions of the Lamm equation

Because the existing direct boundary-fitting method using
the Fujita function is primarily limited by the effects of the
meniscus, initially two other approximate solutions of the
Lamm equation were considered as alternative fitting func-
tions, both of which correctly treat the boundary conditions
imposed by the meniscus: the Holladay solution (Holladay,
1979), and the Fujita-MacCosham solution (Fujita and Mac-
Cosham, 1959). Each of these was tested against simulated,
noise-free data obtained using the Claverie finite-element
method (Claverie, 1975).

As expected, both of these functions work well at times
early in the run (where the approximations used in their
derivation are very good). They were then tested on data
from simulations for a species with a sedimentation coeffi-
cient, s, of 2 S and a diffusion coefficient, D, of IOF (1 F =
1077 cm?s), which corresponds to a protein with
M, ~18,000, using data from both early and late times in the
run. In this situation, although both of these solutions give
accurate values for s, they both give values for D that are
significantly in error (about a 6% underestimate with Fujita-
MacCosham, and about a 12% overestimate with the Hol-
laday solution), and they also both give significant and
systematic deviations from the correct boundary shape. Nei-
ther of these solutions is therefore an acceptable alternative.

Development of an improved fitting function

Rather than attempting to find an entirely new solution to
the Lamm equation, it seemed reasonable to try to extend
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the range of application of one of the existing solutions that
works well at early times by adding additional terms that
would increase the accuracy of the approximation at later
times. Because the Fujita-MacCosham solution appears to
be the superior of the two at later times, and because it is
also more rapid to compute, it was selected as the basis for
potential improvement. This solution gives the concentra-
tion ¢ at any time ¢ and radial position r in terms of
dimensionless parameters T = 2sw’t, x = (r/r,)% € =
2D/sw*t, and z = In(x), as
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where ¢, is the loading concentration, r, is the meniscus
position, and erf( ) is the error function. This solution was
obtained under the approximations that 7 << 1 and that
exp(—z) = 1.

Upon fitting individual simulated boundaries, as the run
progressed it appeared that the error in the returned D value
grew approximately linearly with 7. This suggested that a
better approximation could be obtained by adding a new
correction term (or terms) of order 7, but how could the
correct term(s) be found? A time-honored method for solv-
ing differential equations is, of course, to guess the correct
solution, and we have partially adopted this approach. In
this case, the fits suggested that we need to divide D by a
term like (1 + a7), where a is a positive numerical constant,
but then how can the correct value for a be determined?
Rather than trying to mathematically solve for solutions of
this form, a numerical approach was used instead, wherein
a was left as a parameter whose value was to be determined
by least-squares fitting.

Therefore the following approach was used to find an
improved function. First, a term of the form (1 + ar) was
added to Eq. 1 in a location that might correct its tendency
to underestimate D at longer times in the run. Next, this new
function was fitted in separate trials to groups of 8-9
simulated data sets representing proteins of ~6, 18, and 67
kDa at 60,000 rpm, which included scans from early in the
run (well before the meniscus is cleared) until the leading
edge of the boundary has nearly reached the cell bottom.
During these fits the values of s, D, c,, the unknown
coefficient o, and a baseline offset were allowed to vary as
needed to optimally fit the shape of the concentration pro-
files (the fits were not constrained to give the correct values
for s, D, and c,). Finally, each candidate function was
evaluated for self-consistency. That is, if the new function
truly represents a higher-order solution, then 1) the value of
« that is returned by fitting should be essentially indepen-
dent of the s and D values used in the simulation; 2) the
returned values of s and D should closely match the correct
values; and 3) the residuals of the fit should be significantly
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reduced relative to those for the starting Fujita-MacCosham
solution.

This procedure was indeed successful, but the shape of
the candidate function was still not optimal for the lowest-
molecular-weight species. The pattern of deviations sug-
gested that a second small correction linear in D was also
needed. In dimensionless parameters D is proportional to €7,
so terms of the form (1 + Bet) were also tested, with B as
a coefficient to be determined by fitting. The doubly cor-
rected function, which we call a “modified Fujita-Mac-
Cosham function,” therefore becomes
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In this function the new (1 + a7) correction term alters the
width of the first error function sigmoid (the dominant term
in this expression, except for very early in the run) and
thereby corrects the underestimate of D at longer run times,
and the (1 + Be7) correction term produces a much smaller
correction in the exponential function of the second term.

When applied to the simulated data for the three different
proteins, the optimum value for 8 was not truly constant,
but ranged from 1.8 to 2.2. This term has almost no effect
on the values of s or D, but its inclusion does significantly
improve the shape of the function (i.e., it significantly
reduces the residuals). Therefore it was decided to fix the
value of B at 2. With this value for 3, the simulated data for
the three different proteins return optimum values for a of
0.2487 *= 0.0020, thus meeting the desired criterion of
constancy.

The improvement obtained by using this new function
instead of the Fujita function that was used previously

-
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(Philo, 1994) is shown in Table 1. The new function gives
about an order of magnitude improvement in the accuracy
of the D values, as well as in the residuals, for the lower
molecular weights, while still providing good accuracy for
s in all cases. For proteins above ~100 kDa, the two
functions are about equivalent. Overall, the simulations
indicate that by using this function it should be possible to
obtain s and D with an accuracy of ~1%, even for quite
small proteins. It should be noted that although we feel these
results and this method of derivation justify the use of this
modified Fujita-MacCosham function for this purpose, this
function should probably not be regarded as a “solution” of
the Lamm equation, but rather as a useful semiempirical
fitting function.

Accuracy for resolving two species

One important reason for seeking a fitting function that
more accurately represents the shape of the boundaries is
the hope that this would improve the ability to detect and
resolve the presence of multiple species. A real strength of
the approach of directly fitting the entire boundary is that if
it is possible to obtain a good fit to a single species model,
and if the molecular weight implied by the derived values
for s and D is consistent with the molecular weight known
from an independent method, then this is strong evidence
that the material is truly homogeneous. Conversely, the lack
of a good fit as a single species (as manifested by large and
systematic residuals) suggests the presence of additional
species. (Note that although this method is not appropriate
for actually characterizing interacting systems, the lack of a
consistent fit as a single species is an appropriate test for
homogeneity, even if the additional species are due to
self-association.) However, if the shape of the fitting func-
tion is inaccurate, and given the presence of noise in real
data, it can be very difficult to judge whether the deviations
in a fit truly indicate an additional species or are just a
consequence of the intrinsic limitations of the fitting proce-

TABLE 1 Comparison of fitting results using either the old Fuijita function or the new modified Fujita-MacCosham functions on
noise-free synthetic data sets covering the full range of boundary movement

Fitted s and D Fitted s and D Residuals using old Residuals using new
using old function using new function function (r.m.s. and function (r.m.s. and
True s and D (% error) (% error) maximum, % of loading ¢) maximum, % of loading c¢)
0.85 S, 13 F (6 kDa) 0.855 S (+0.6%) 0.843 S (—0.8%) 1.1% r.m.s., 6% max 0.032% r.m.s., 0.1% max

11.15 F (—14.2%)
2 'S, 10 F (18 kDa) 2.011 S +(0.6%)
9.48 F (—5.2%)
44 S, 6 F (67 kDa) 4.408 S (+0.2%)
5.95 F (—0.8%)
7.2 S, 1.2 F (550 kDa) 7.204 S (+0.1%)
122 F (+1.7%)

1.994 S (—0.3%)
9.99 F (—0.1%)

4.396 S (—0.1%)
6.05 F (+0.8%)

7.205 S (+0.1%)
1.22 F (+1.7%)

12.86 F (—1.1%)

0.28% r.m.s., 2.3% max 0.036% r.m.s., 0.1% max

0.066% r.m.s., 0.6% max 0.015% r.m.s., 0.1% max

0.055% r.m.s., 1.1% max 0.087% r.m.s., 0.4% max

The simulations for the first three species are for a 60,000 r.p.m. rotor speed; that for the last is at 40,000 r.p.m.
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dure. Furthermore, when there truly are multiple species
present, if the shape of the fitting function is not accurate,
the ability of curve fitting to accurately resolve multiple
components is likely to be strongly compromised.

Samples of proteins that are normally monomeric are
commonly contaminated with small amounts of dimer or
higher oligomers that are not in association equilibrium with
the monomer (e.g., a disulfide-linked dimer), and such
samples are therefore appropriate candidates for analysis as
multiple noninteracting species. Using the Fujita function,
we have previously shown that it is possible to resolve
<10% contamination of bovine serum albumin with such a
dimer (Philo, 1994), but could this be done for a much
lower-molecular-weight monomer, where the physical sep-
aration of monomer and dimer is very poor? Simulations
were run of such a situation for a sample containing 0.9 AU
of a monomer with s = 1.5 S, D = 11 F (~12 kDa), and 0.1
AU of a noninteracting dimer with s = 2.25S, D = 8.25 F.
To make the simulation more realistic, random Gaussian
noise of r.m.s. amplitude 0.006 AU was added (typical of
the photometric noise in a Beckman Optima XL-A).

The simulations indeed show that when using the Fujita
function it is difficult to tell from the residuals that a second
component is present. Fig. 1 shows the residuals using the
Fujita function for the first and last scans in simulated runs
for either a pure monomer (Fig. 1 A) or the mixture with
10% dimer (Fig. 1 B), both fitted assuming a single species
is present. The actual first and last data sets for the mixture
simulation are shown in Fig. 1 E to indicate the position of
the boundaries at this time, and to show that this amount of
dimer does not give any hint of a second boundary. Al-
though the amplitude of the residuals is, as expected, clearly
higher when dimer is present, the pattern of the residuals for
the pure monomer sample (which arise from the incorrect
shape of the Fujita function) is hardly distinguishable from
the pattern when dimer is added (and this is true throughout
the run). Thus it would not be obvious from the residuals
that this sample is not homogeneous. With the Fujita func-
tion, the residuals still show some systematic deviations
early in the run, even with a two-species fit (Fig. 1 C),
whereas the residuals appear random when the new function
is used in a two-species fit (Fig. 1 D).

These simulations also show that the MFM function gives
a dramatic improvement in the ability to correctly resolve
the properties of the two components in the mixture, as
summarized in Table 2. The Fujita function does a very poor
job in the two-species fit, implying that the mixture consists
of about equal amounts of a 1.34 S and a 1.81 S species. In
contrast, the modified Fujita-MacCosham function (which
we will hereafter call the MFM function for brevity) does an
excellent job of resolving monomer and dimer, deriving the
correct s, D, and concentration for the monomer within
~1%, and the correct s and D for the dimer within ~2%
(although, as might be expected, the 95% confidence inter-
val for D of the dimer is quite large). Most importantly, the
derived properties of the dimer are more than sufficiently
accurate to correctly identify the species as a dimer. The
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FIGURE 1 Residuals (experimental — fitted) from fits to simulated
velocity experiments; in each panel the lower trace shows the residuals
from the first data set used in the analysis, and the upper trace corresponds
to the last data set (see text). (A) Single-species fit using the Fujita function
to a simulation of a 1.5 S, 11 F monomer at 1 AU loading concentration.
(B) Single-species fit using the Fujita function for a 90% monomer, 10%
dimer simulation. (C) Two-species fit using the Fujita function on the
monomer-dimer mixture simulation. (D) Two-species fit using the modi-
fied Fujita-MacCosham function on the monomer-dimer mixture simula-
tion. (E) Sedimentation boundaries corresponding to the first and last data
sets for the monomer-dimer mixture.

improved performance of the MFM function imposes at
most an approximately twofold increase in computational
time over the Fujita function. In current versions of the
SVEDBERG program, this performance penalty is more
than overcome by faster algorithms, such that the MFM
function is now threefold faster than the Fujita function was
in older versions. The two-species fits for Table 2 with the
MFM function require ~40 s using a 90-MHz Pentium. (A
version implementing this new function will be made avail-
able via http://www.bbri.harvard.edu/RASMB/rasmb.html.)

Tests of three-species fits

Recently there has been considerable interest in using sed-
imentation velocity techniques to obtain stoichiometry and
conformation information about antigen-antibody (Hensley,
1996) and other protein-protein complexes, samples that
typically contain more than two species. For example, Hens-
ley et al. (1995) have used time-derivative analysis to re-



Philo Improved Fits of Sedimentation Velocity Data 439

TABLE 2 Results from fitting simulations for a monomer-
dimer mixture containing 0.9 AU of a monomer withs = 1.5 S,
D = 11 F, and 0.1 AU of its dimer withs = 225S,D =825 F

Results using modified
Fujita-MacCosham
function

Results using Fujita

Type of Fit function

One species fit 1.571 S [1.569-1.573] 1.557 S [1.556-1.559]
11.77 F [11.67-11.86]) 12.52 F [12.41-12.58)
1.0068 AU [1.0048-1.0083] 1.0012 AU [0.9994-1.0024]

Two species fit

Species 1 1.339 S [1.326-1.351] 1.489 S [1.484-1.494)
8.35 F [8.21-8.52] 10.92 F [10.77-11.07)
0.475 AU [0.456-0.491] 0.888 AU [0.877-0.899]

Species 2 1.812 S [1.801-1.820] 2.200 S [2.169-2.230]

11.11 F [10.79-11.40]
0.527 AU [0.512-0.547]

8.42 F [7.72-9.15]
0.112 AU [0.101-0.123]

Values within square brackets are 95% confidence intervals.

solve and identify up to four different components in mix-
tures of interleukin-5 (IL-5), a dimeric protein, and the Fab
fragment of an antibody directed against it. In such situa-
tions the binding of the complexes is often so tight, and the
kinetics sufficiently slow, that the different species are
effectively noninteracting during the course of the velocity
run. Is the direct boundary-fitting approach also applicable
in such situations?

Simulations were run to mimic an experiment carried out
on a mixture containing 2 mol of Fab per IL-5 dimer
(Hensley et al., 1995). This mixture contained three species
in approximately a 2:1:1 ratio: a complex containing two
Fab’s and one IL-5 dimer (5.80 S, 4.32 F), a complex
containing one Fab per IL-5 (4.49 S, 5.07 F), and free Fab
(3.54 S, 6.59 F). For the simulations a total loading con-
centration giving 1 AU (about 150 ug/ml for scans at 230
nm) was assumed, with random noise of 0.006 AU r.m.s.
First separate simulations for each individual species were

TABLE 3 Tests of three-species fits

run, both with and without added noise, to establish the
“correct” values for the parameters (which differ slightly
from the true values because of the approximations) and the
maximum precision that could be obtained for the parame-
ters, given the assumed signal/noise. These results are tab-
ulated in Table 3.

Next a three-species fit was attempted on the simulation
for the mixture. Somewhat surprisingly, this fit was able to
converge starting from the default guesses of equal amounts
of 25,4 S, and 6 S species, even when all parameters were
allowed to vary. These data, the fitted curves, and the
residuals are shown in Fig. 2, A and C. As seen in Table 3,
the results from this fit are quite good, with all of the
sedimentation coefficients determined with an accuracy of
better than 1%, the diffusion coefficients to an accuracy of
better than 4%, and the fraction of each species to better
than 1%. Furthermore, by comparing the parameter confi-
dence regions from the mixture fit to those for an individual
species fit at the same signal/noise, we see that the presence
of the other species has reduced the precision of the s and D
values by only two- to fourfold.

In any multispecies analysis, it is always desirable, when
possible, to fix the properties of one or more species at
independently determined values, to increase the reliability
and accuracy of the remaining fitted parameters. In some
cases it may also be necessary to fix some of the parameters
even to get convergence of the fit (for example, as was the
case in the multiple-Gaussian analysis of the experiment we
are simulating; Hensley et al., 1995). Therefore we have
tested how knowledge of only the s values, or of both s and
D, for the largest and smallest species in this mixture would
affect the results. Fixing these values does indeed somewhat
improve the accuracy and precision of the remaining pa-
rameters, but not that dramatically. However, the rather
small improvement in this case is a consequence of the good
accuracy obtained when all of the parameters are fitted. If

Data fitted and type of fit

Results for species 1

Results for species 2

Results for species 3

Each species simulated
separately, no noise

Each species simulated
separately, with 0.006
AU noise added

Simulations of mixture,
all parameters varied

Simulations of mixture, s
for species 1 and 3
fixed at known values

Simulations of mixture, s
and D for species 1
and 3 fixed at known values

5.797 S, 4.39 F, 0.500 AU

5.797 [5.793-5.801] S
4.40 [4.34-4.46] F
0.5002 [0.4995-0.5010] AU

5.796 [5.779-5.811] S
4.42 [4.30-4.55] F
0.5019 [0.4899-0.5151] AU

Fixed at 5.797 S
4.41 [4.30-4.53] F
0.5008 [0.4975-0.5042] AU

Fixed at 5.797 S
Fixed at 4.39 F
0.5003 [0.4962-0.5043] AU

4.486 S, 5.11 F, 0.250 AU

4.487 [4.480—4.494] S
5.07 [4.95-5.19] F
0.2499 [0.2492-0.2507] AU

4.473 [4.413-4.530] S
491 [4.59-5.22] F
0.2442 [0.2319-0.2573] AU

4.474 [4.446-4.502] S
4.94 [4.61-5.28] F
0.2469 [0.2375-0.2569] AU

4.482 [4.462-4.504] S
493 [4.61-5.25] F
0.2465 [0.2377-0.2556] AU

3.535 S, 6.61 F, 0.250 AU

3.536 [3.529-3.542] S
6.48 [6.34-6.63] F
0.2499 [0.2489-0.2508] AU

3.539 [3.515-3.563] S
6.82 [6.55-7.08] F
0.2542 [0.2419-0.2662] AU

Fixed at 3.535 S
6.79 [6.44-7.15] F
0.2526 [0.2488-0.2604] AU

Fixed at 3.535 S
Fixed at 6.61 F
0.2532 [0.2460-0.2606] AU
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FIGURE 2 Simulated data for a mixture of three species (see text) and
fitted curves (A), residuals for a two-species fit (B), and residuals for a
three-species fit (C). The bottom curve in each residual plot is for the
earliest data set, and each subsequent plot has been shifted upward by 0.03
AU for clarity.

the signal/noise were lower, or the physical separation
poorer, an independent knowledge of at least the sedimen-
tation coefficient of one or more of the species would
almost certainly be required to obtain reliable values for the
remainder. In this regard, it is also instructive to examine a
two-species fit to these same data. A two-species fit finds
species of 5.72 S, 4.94 F (close to the true values for the
major component) and 3.92 S, 7.7 F (an s value about
midway between those of the two smaller components).
This fit actually reproduces the shape of the boundaries
fairly well. Without any independent information about the
number of species or their properties, the inadequacy of this
two-species fit can really only be seen by the nonrandom
pattern of the residuals, as shown in Fig. 2 B, and this
pattern would not necessarily be apparent if the signal/noise
were lower by about twofold. Fig. 2 B also illustrates the
importance of including data both early and late in the run,
because the middle three scans are fitted quite well with
only two species.
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The overall conclusion is that this technique should be
capable of resolving at least three species (and possibly four
if the properties of some species are known) from data at
signal/noise levels routinely available with current commer-
cial instrumentation. However, it will generally be impor-
tant to have some independent information about the num-
ber of species, and highly desirable to be able to run one or
more of them as individual species or in mixtures in which
they are the dominant component. Moreover, one must
always be cognizant of the underlying assumption that the
species are effectively noninteracting on the time scale of
the velocity run.

Can this method be applied when the
sedimentation coefficient is
concentration dependent?

One of the limitations of this direct fitting analysis is that
the fitting functions do not take into account the possible
concentration dependence of s (or D). With absorbance
optics it is generally possible to acquire data at protein
concentrations of <100 wg/ml, where for globular proteins
the concentration dependence is usually negligible. (This is
often done in the XL-A by scanning at 230 nm, a wave-
length with excellent signal/noise, and where the absor-
bance is typically five- to sevenfold higher than at 280 nm.)
However, in certain situations it may be necessary or desir-
able to work under conditions in which the concentration
dependence is not negligible.

To obtain an estimate of how seriously this might affect
the validity of the direct fitting analysis, simulations were
run for a species with s = 2 S, D = 10 F, at concentrations
of either 2 or 10 mg/ml, assuming this species had a con-
centration dependence given by s, = 55 X (1 — ¢ X 0.009),
a magnitude typical of globular proteins (Laue et al., 1992).
(Note that the Claverie routine did not incorporate a con-
centration dependence of D.) Fits to the 2 mg/ml simulation
returned 1.960 S, 9.58 D, fits to the 10 mg/ml simulation
returned 1.837 S, 8.36 D, whereas without concentration
dependence the values returned were 1.994 S, 9.96 F. Thus
the s values show reductions close to the expected factors of
1.018 and 1.09, and the D values are reduced almost exactly
twice as much. At 2 mg/ml, the shape of the MFM function
is still a reasonably good match to the boundaries, but at 10
mg/ml the maximum residuals exceed 2% of the loading
concentration. Overall, these results suggest that this
method is quite appropriate for determining raw, uncor-
rected sedimentation coefficients of single species with
moderate concentration dependence, and that even the D
values may be sufficiently accurate for many applications.
However, because of the poorer match of the MFM function
to the boundary shapes when there is a significant concen-
tration dependence, the accuracy of multispecies analysis
would be severely compromised.
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Comparison with time-derivative analysis when
applied to low-molecular-weight solutes

The “dc/de” time-derivative analysis technique (Stafford,
1994) has recently become widely used for the analysis of
sedimentation velocity data. Although the time-derivative
method was developed primarily for analysis of interacting
systems at low concentrations, it is often applied to obtain
sedimentation coefficients for individual species, and more
recently to obtain diffusion coefficients (Stafford, 1996;
Hensley, 1996). For proteins smaller than ~40 kDa, some
investigators have noted that sedimentation coefficients ob-
tained via this method, either from the positions of peaks in
the g(s*) distributions, or as weight-average values calcu-
lated from these distributions, are significantly smaller than
those obtained from the direct boundary-fitting approach.
This has led to some confusion about the applicability of
both methods and has raised questions about which s values
are “correct.” It therefore seems important to make a direct
comparison of these techniques and to explore this issue
further.

Both methods were applied to simulations fora2 S, 10 F
(~18 kDa) species. Noise-free simulations were used, be-
cause for this purpose noise reduction is irrelevant. One
difficulty in comparing these methods is that each method
typically uses quite different data acquisition sequences. For
time-derivative analysis a group of scans closely spaced in
time is used (generally acquired fairly late in the run for
optimal resolution of species), during which there is a
modest amount of boundary movement. For the direct fit-
ting approach scans taken at much greater time intervals and
covering the full range of boundary movement are generally
used. For this comparison, however, conditions optimized
for time-derivative analysis were chosen, and the same set
of eight closely spaced data sets (which span the time when
the boundary crosses the midpoint of the cell) was used for
both methods.

The g(s*) distribution from the time-derivative analysis is
shown in Fig. 3. The peak of the g(s*) distribution occurs at
1.896 S, whereas the weight-averaged value obtained by
integrating across this distribution is 1.867 S, i.e., results
5-7% below the true value. Also shown in Fig. 3 is the best
fit of the g(s*) distribution to a Gaussian, which is centered
at 1.883 S. The width of this Gaussian implies a diffusion
coefficient of 9.91 F, in good agreement with the true value,
although values of D differing by a few percent would be
obtained at different times during the run (Stafford, 1996).
By comparison, values of 1.993 S and 10.01 F are obtained
when the MFM function is used to directly fit the same data
sets. Thus if we simply directly compare the numbers, for
small proteins the direct fitting approach is considerably
more accurate. The underestimation of s values by g(s*)
becomes worse for even smaller molecular weights, but is
negligible above ~40 kDa (a range where both methods
generally give accurate values for both s and D). However,
because this is a reproducible, systematic property of the
8(s*) curves, the s values from time-derivative analysis are
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FIGURE 3 Results of time-derivative analysis on simulated, noise-free
data for an s = 2 S, D = 10 F species, and a fit of the resulting g(s*)
distribution to a Gaussian function.

not “wrong.” It would be unfair not to point out that it is
quite feasible to correct for this effect, for example by
running simulations such as these to determine the size of
the shift to construct a calibration curve. Therefore a knowl-
edgeable and careful user of time-derivative analysis can
correct for this shift and thereby obtain accurate s values
even for low-molecular-weight species.

It should also be noted that Fig. 3 demonstrates that
although the Gaussian shape is a good approximation near
the center of the g(s*) distribution, for low-molecular-
weight species the shape differs significantly from a Gauss-
ian in the “wings” of the distribution, especially when a
boundary has not moved very far from the meniscus. The
results above, where the Fujita and MFM functions were
compared on a monomer-dimer mixture (Fig. 1, C and D,
Table 2), suggest that the fact that the g(s*) curves for
low-molecular-weight species differ in shape from a Gauss-
ian may significantly limit the accuracy of multispecies fits
of g(s*) distributions using Gaussian components.

Can direct boundary fitting be applied to
noisy data?

One important reason why the time-derivative technique
(Stafford, 1994) has rapidly become widely used is its
powerful ability to remove systematic, time-independent
noise from the data, and to reduce random noise by aver-
aging. Because nonlinear least-squares analysis can, in
many cases, also perform well at reducing the effects of
noise, it seems worthwhile to compare and discuss the
abilities of both methods to minimize the effects of both
random and systematic noise. Because the focus of this
paper is on paucidisperse samples, the goal is assumed to be
to obtain accurate hydrodynamic parameters for individual
species, and therefore the appropriate measure of noise
reduction is improved precision (lower standard deviation)
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of those parameters (as opposed to smoothing or noise
reduction in the g(s*) distributions themselves).

For the purpose of comparing analyses of data that are
limited by random noise (e.g., the intrinsic photometric
noise of the optical system), data sets were simulated for a
protein of 2.16 S and 6.72 D, corresponding to measure-
ments on IL-5 done with custom Rayleigh interference
optics (Hensley et al., 1995). In this case we will simulate
the same experiment at the same protein concentration, but
assume instead that it was done using absorbance scans at
230 nm, giving a total signal of 0.45 AU and 0.006 AU
r.m.s. noise. Once again the direct fitting approach would
optimally use data sets covering the full range of boundary
movement, but in this case a more limited time range,
optimal for time-derivative analysis, was chosen so that the
two methods could use the same data.

Therefore, a group of 32 closely spaced data sets appro-
priate for time-derivative analysis (2-min interval) were
created and analyzed by the dc/ds method. The resulting
g(s*) distribution was then fitted to a Gaussian to derive
best-fit values and standard errors for s and D. This fit gave
values for s and D of 2.102 S and 6.99 F, with standard
errors (estimated from the variance-covariance matrix) of
+0.0028 S and *0.035 F. These same data were then
analyzed by direct fitting using the MFM function, but only
every fourth data set was used from among the 32. This
latter fit gave values of 2.156 * 0.0011 S and 6.73 * 0.040
F. If only these eight data sets are used in the dc/dt method,
the values 2.106 * 0.0036 S and 6.98 * 0.038 F are
obtained.

Thus the direct fitting approach gives noise reduction (as
measured by the standard errors) that is about equal to
time-derivative analysis for D, and better for s, even when
fewer scans are used. This simulation also shows that direct
fitting can work well with the same scan sequences used for
time-derivative analysis, although for direct fitting the pre-
cision of s and D would improve further if the scan interval
were longer. In practice, probably the main situation where
it may be advantageous to exploit this noise-averaging
characteristic of direct boundary fitting arises for absor-
bance data, where the relatively slow scan speed can sig-
nificantly limit the numbers of scans that can be acquired,
especially when more than one sample is being run at one
time. Thus, for example, if one needed to study a group of
samples at very low concentrations, it may be beneficial to
run seven samples simultaneously in the eight-hole rotor
and analyze them with direct boundary fitting, whereas
perhaps only one or two could be run simultaneously if
time-derivative analysis were used. (This limitation would
not apply for the Rayleigh optical system in the new Beck-
man XL-I because of its rapid data acquisition.)

However, it is important to emphasize that the type of
“noise” that is often most important is not random photo-
metric noise, but rather time-independent, systematic dis-
tortions in the data that are caused by the windows of the
centrifuge cell (so-called window noise). This window
noise is essentially completely eliminated by time-deriva-
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tive analysis, but it poses a potentially much greater prob-
lem for the direct fitting approach.

It can be easily shown that noise “spikes” from dust or
scratches on the windows, which affect the data over only a
very limited radial distance, have very little influence on the
results of direct fits. On the other hand, noise that affects
broad regions of the cell (such as window distortion in
refractometric scans, nonuniform window absorbance in uv
scans, or protein deposits on the windows) are much more
of a problem for accurate analysis by direct fitting. In such
situations, it is often possible to reduce or eliminate the
window noise by subtracting a “baseline file” from each
data set used in the direct analysis. Such baseline files,
which ideally exactly reproduce the window distortions, are
generally best created by simply continuing the run and
recording the baseline after the sample has been completely
pelleted (but this is often not practical with low-molecular-
weight species). It is also possible to obtain a baseline after
a run by rinsing and refilling the sample channel with
buffer, but such a baseline may not exactly reproduce the
window noise if either the window distortions or the cell
position is not reproducible, and/or if protein deposits are
washed away. For absorbance data another method for
obtaining a baseline is to record a scan at a wavelength
where the sample does not absorb, but this approach has the
drawbacks that the window absorbance may be wavelength
dependent, and that such a scan will not correct for protein
deposits on the windows. Some examples of these latter two
methods for obtaining baseline files for absorbance data are
shown in Fig. 4. Traces A-D show example baselines for
moderately bad window noise obtained by scanning at
wavelengths off the absorption peak (at 340 nm in this case)
and after rinsing and refilling the cell and then scanning at
the 230-nm measurement wavelength, for two different
cells from the same run. Although for each cell the two
types of baseline share many of the same noise features and
overall trends, the differences between them are certainly
significant (and not consistent from cell to cell), which illus-
trates some of the problems and limitations in obtaining an
accurate baseline. Trace E shows an example that represents
one of the worst cases of window noise we have seen for
absorbance scans (probably the result of a fingerprint).

How much would “bad” distortions such as those in Fig.
4 E influence analytical results if they were not properly
removed by a baseline file? To answer this, the trace from
Fig. 4 E was first subjected to a nine-point adjacent-value
smoothing (to reduce the random noise component but
preserve the broad-scale distortions), and then this file was
subtracted from the same simulated data for IL-5 used
above for the photometric noise-averaging test. The analysis
of the resulting distorted data gave 2.163 * 0.0015 S and
6.56 = 0.057 F, showing that this amount of window noise
causes only minor changes in the best-fit parameters. Sim-
ilarly, when this same window noise was added to the
simulations used for Table 1, the maximum fractional
change was <0.5% in s and <1% in D.
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FIGURE 4 Examples of baseline files showing “window noise” from
absorbance scans with the Beckman Optima XL-A. Traces A and C were
recorded by rinsing and refilling the sample channels of two different cells
after a run, reloading the cells, and then recording these scans at the run
speed and using the same measurement wavelength as the actual data for
the sample (230 nm for these data). Traces B and D are from the same cells,
but were recorded at the end of the experimental run, without stopping the
rotor, at 340 nm, where the protein absorbance is negligible. All four of
these traces are averages of four individual scans that were later combined
digitally to create one average scan. Trace E is a single scan like those in
B and D but from a different run, showing a particularly bad example of
window noise.

Thus for absorbance scans window noise is generally not
a strongly limiting factor for direct fitting. However, for
Rayleigh data the relative magnitude of window noise is
generally much higher, and therefore window noise would
probably strongly influence the results unless an accurate
baseline file can be obtained and subtracted. We are explor-
ing the possibility of using a scan of the plateau region,
taken very early in the run, to provide a measure of the
window distortions that can be used as a baseline for Ray-
leigh data, but validation of this approach must await access
to an instrument with Rayleigh optics. In the absence of a
baseline correction, the time-derivative approach is proba-
bly a better choice for analysis of Rayleigh data.

Other limitations to accuracy of the
hydrodynamic parameters

The above results imply that direct fitting with the MFM
function should routinely give a precision and accuracy of
better than 1% for sedimentation coefficients, and a few
percent for diffusion coefficients, for proteins that are 5 kDa
or larger, and that data of this quality should be readily
obtained at protein concentrations of ~100 ug/ml using
absorbance data from the Beckman XL-A, even in the
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presence of window noise. One additional factor that could
easily compromise this accuracy (no matter what the anal-
ysis method) is variations in viscosity due to changes in the
sample temperature, and it is certainly important to allow
sufficient time for temperature equilibration before starting
a run. A second potential limit that is less obvious is the
accuracy of the position of the meniscus. An error of only
0.006 cm in the meniscus position will typically produce an
error of 1% in s, and such an error may represent a shift of
only a single data point (or less) depending on the radial
data density. Furthermore, it is not entirely clear how to
determine the true correct meniscus position from the ex-
perimental data. Our usual practice is to define the meniscus
position for absorbance data by the peak of the positive
excursion (which is usually also approximately the center of
meniscus region), but it is not obvious that this is the
position that best corresponds to theory. With the direct
boundary-fitting approach, it is possible to designate the
meniscus position as another parameter to be determined by
fitting. However, when the Fujita function is used, its poor
representation of data near the meniscus means that fitting
the meniscus position is problematic and is likely to produce
inaccurate results. With the MFM function, at least for
simulated data, if the meniscus is treated as an adjustable
parameter, the fitted meniscus position is very close to the
true one (usually within 0.0001 cm), and the values for other
parameters are essentially unchanged. Therefore, fitting the
meniscus position may now be a more reasonable and useful
option (but certainly it will always be better to have an
accurate experimental value).

In practice, our results show that the reproducibility of
hydrodynamic parameters from this type of analysis is quite
good, and that these and other sources of systematic error do
not compromise the precision too severely. For example, the
protein that we have measured the most times (five different
runs over a 2-year period) gave peak-to-peak differences in
s, D, and M, (from s/D) of 0.9%, 5.0%, and 4.5%, respec-
tively, and standard deviations of 0.4%, 2.1%, and 2.4%.
Other proteins that we have measured on more than one
occasion seem to give similar precision. The variations
between runs are, however, generally significantly greater
than those obtained for duplicate samples in the same run.
Furthermore, these parameter variations between runs are
also often outside the statistical 95% confidence interval
from the fits, which suggests that some form of systematic
noise is the true limiting factor. It also should be noted that,
although our experience in applying the new MFM function
to real systems is limited, the results to date suggest that the
molecular weights obtained from s/D are a few percent
lower than expected based on known molecular weights,
which probably indicates that some unknown factor is caus-
ing the boundaries to be slightly broader than theory pre-
dicts, leading to a slight overestimate of D. This latter
observation is also consistent with our earlier observation
that the Fujita function, which theoretically should under-
estimate D, seems to give accurate molecular weights



444 Biophysical Journal

(Philo, 1994). Thus all of our experiments seem to give
boundaries slightly broader than expected, but the exact
source of this broadening, and whether or not it is common
to all instruments, remains to be determined. Nonetheless, it
is quite clear that with these techniques D values and
molecular weights with an accuracy of a few percent are
easily obtainable. This accuracy is more than sufficient for
many purposes, but this method is certainly not a replace-
ment or substitute for sedimentation equilibrium.

This manuscript is dedicated to David Yphantis in honor of his 65th
birthday. We thank Walter Stafford for helpful discussions and for the
release of his program DCDT via the National Analytical Ultracentrifuga-
tion Center at the University of Connecticut.
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