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The time derivative method for deriving the 
sedimentation coefficient distribution, g(s*), from 
sedimentation velocity data that was developed by 
Walter Stafford has many advantages and is now 
widely used. By fitting Gaussian functions to the 
g(s*) distribution both sedimentation and diffusion 
coefficients (and therefore molecular masses) for 
individual species can be obtained. However, some 
of the approximations used in these procedures 
limit the accuracy of the results. An alternative 
approach is proposed in which the dc/dt data are 
fitted rather than g(s*). This new approach gives 
improved accuracy, extends the range to 
sedimentation coefficients below 1 S, and enhances 
resolution of multiple species. For both approaches 
the peaks from individual species are broadened 
when the data cover too wide a time span, and this 
effect is explored and quantified. 

An alternative algorithm for calculating ˆ ( *)g s  
from the dc/dt curves is presented and discussed. 
Rather than first averaging the dc/dt data for 
individual scan pairs and then calculating ˆ ( *)g s  
from that average, the ˆ ( *)g s  distributions are 
calculated for every scan pair and then 
subsequently averaged. This alternative procedure 
yields smaller error bars for g(s*) and somewhat 
greater accuracy for fitted hydrodynamic 
properties when the time span becomes large. 

Key Words: sedimentation velocity; analytical 
ultracentrifugation; time derivative analysis; 
sedimentation coefficient; diffusion coefficient; 
numerical methods; least-squares fitting. 

In recent years a new method of sedimentation 
velocity analysis pioneered by Walter Stafford at 
Boston Biomedical Research Institute has proven very 
useful and is now widely used. This time-derivative 
analysis or “dc/dt” methodology allows derivation of 
the sedimentation coefficient distribution function, 
ˆ ( *)g s , by subtracting pairs of scans of concentration 

versus radius in the centrifuge cell, rather than from the 
dc/dr data provided by a Schlieren optical system or 

dc/dr computed by numerically differentiating c vs. r 
data (1, 2) A great virtue of this method is that 
systematic, time-independent noise in the data, such as 
baseline distortions from the windows of the centrifuge 
cell, is completely removed. This fact, plus the ability 
to average together the results from many pairs of 
scans, provides a tremendous improvement in 
signal/noise and thus sensitivity. Indeed, sedimentation 
velocity studies on proteins are now routinely run at 
concentrations below 100 µg/ml instead of the 2-10 
mg/ml common in the past, thus allowing many more 
applications and avoiding complications in 
interpretation due to thermodynamic and 
hydrodynamic non-ideality at high concentrations. 

The ˆ ( *)g s  distribution represents the concentration 
distribution at the time of the analysis, when different 
components will have undergone radial dilution to a 
different extent. Thus for samples containing a single 
species or a mixture of independently-sedimenting 
components ˆ ( *)g s  is usually corrected to g(s*), the 
apparent distribution when the sample was loaded. 
Another important feature of the time derivative 
method is that it is possible to fit individual peaks in 
the g(s*) distribution to Gaussian functions and thereby 
derive both the sedimentation coefficient (from the 
center position) and the diffusion coefficient (from the 
width of the Gaussian) for individual species. (3, 4) 
Further, with both the sedimentation and diffusion 
coefficients known, one can obtain the molecular mass 
using the Svedberg equation. 

While tremendously useful, these methodologies 
have their shortcomings, and the purpose of this paper 
is to propose some revised algorithms to address those 
problems. As noted by Stafford, (5) there are 
difficulties in applying the dc/dt method to peptides 
and proteins in the 5-20 kDa range due to their high 
diffusion coefficients. Indeed, in an attempt to study a 
~4.5 kDa peptide in our laboratory it was found that 
although the peptide gave a distinct peak around 0.8 S 
in the dc/dt curve (Figure 1A), after transformation 
there was no peak in the g(s*) distribution (Fig. 1B), 
and it was impossible to obtain either the 
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sedimentation or diffusion coefficient from that 
distribution. Further, other studies in our laboratory 
suggested that the accuracy of the diffusion 
coefficients and masses derived by fitting g(s*) 
distributions for single proteins of  > ~100 kDa can 
give errors of 8% or more, somewhat larger than the 2-
5% accuracy reported by Stafford (4), and significantly 
worse than can be obtained by directly fitting the c vs. 
r data using either approximate (6, 7) or finite-element 
numerical solutions (8) of the Lamm equation.   

It is certainly true that errors in mass of this 
magnitude are trivial if one merely wants to ascertain 
whether the protein is a monomer or a dimer in 
solution. However, an important application for 
sedimentation velocity analysis is to provide tests of 
sample homogeneity. In the past the criterion for 

homogeneity was largely limited to the absence of 
resolved boundaries from minor species. Today the 
modern data analysis methods that allow derivation of 
apparent diffusion coefficients from the widths of the 
boundaries, when combined with an accurate value for 
the monomer mass from the amino acid sequence or 
from mass spectrometry, permit a much more rigorous 
test of homogeneity. Given that heterogeneity arising 
either from contaminants, irreversible aggregates, self-
association, and/or variations in conformation will 
always produce broader boundaries, if the mass 
obtained from the ratio of sedimentation coefficient to 
apparent diffusion coefficient accurately agrees with 
the monomer mass (or an integer multiple of that mass 
when the native state is an oligomer), then the sample 
must be highly homogeneous. This type of test has 
proven quite useful, for example, in characterizing 
proteins used as pharmaceuticals. However, this test 
begs the question “how much error in mass is tolerable 
before concluding that heterogeneity is present?” 
Therefore before using the dc/dt methodology for such 
tests it is critical to understand the magnitudes and 
sources of error. These considerations led to attempts 
to reduce the magnitude of these errors and to 
developing the new procedure described herein where 
the dc/dt data rather than the g(s*) data are fitted. 

Another difficulty that often arises in applying the 
dc/dt methodology, particularly for studies at low 
concentrations, is that in order to obtain sufficient 
signal/noise a large number of scans must be used. As 
the time span covered by these scans increases, 
eventually the boundary movement becomes too large 
and the approximation that !c/!t " dc/dt breaks down, 
resulting in broadening of the peaks in the dc/dt and 
g(s*) curves. Walter Stafford has proposed a “rule of 
thumb” for estimating the maximum time span that can 
be used before the peak broadening becomes excessive 
(http://www.bbri.org/dcdt/Rule.pdf), and here we 
explore in more detail the size of the errors in diffusion 
coefficients which are induced by this mechanism for 
both the old method of fitting to g(s*) curves and the 
new method of fitting to dc/dt. 

What, then, is limiting the accuracy? For the low 
masses the dominant error arises from the high 
diffusion coefficient, and occurs during the 
mathematical transformation from dc/dt to g(s*). This 
transformation requires dividing each value of dc/dt by 
the corresponding s value.  However, because of 
diffusion the values of dc/dt from a single species are 
non-zero over a broad range of sedimentation 
coefficients, and consequently the dc/dt values are 
often being divided by s values that differ significantly 
from the true value. This effect tends to shift the peak 

Fig. 1 An example of applying time-derivative analysis 
to a small peptide (~4.5 kDa) run at 60000 rpm. The
average dc/dt data from 10 scans at 10 min intervals are
shown in panel A. Although a clear peak at s* ~ 0.8 is 
present in dc/dt, no corresponding peak can be 
discerned in the g(s*) distribution from these data, 
shown in panel B (and this is true even if the dc/dt data 
are truncated before transformation anywhere within
the region from 0.05 to 0.5 S). The solid curve in Panel
A is the result of a least-squares fit to the dc/dt data 
(see Results). 
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in g(s*) to lower sedimentation coefficients, and to 
distort the shape increasingly as s approaches zero. 
Since this effect is inherent in the transformation, it 
appeared that the only way to avoid this problem and 
obtain higher accuracy for low mass species would be 
to work directly with the untransformed dc/dt data. 

For the larger masses this distortion of the data is 
sharply reduced, so the fact that the errors in D again 
grow larger as mass is increased suggests a second 
source of error. At higher masses the errors in D appear 
to arise from the use of a Gaussian curve to fit the data, 

which is based on the Faxén approximate solution to 
the Lamm equation (4). This Faxén approximate 
solution neglects the effects of restricted diffusion near 
the meniscus early in the run, and has previously been 
shown to underestimate D for higher mass proteins 
when used for whole-boundary analysis (7).  

Thus in an attempt to avoid both these problems it 
was decided to attempt to fit directly to the dc/dt data, 
thus retaining all the noise reducing advantages of the 
dc/dt computation, but using a fitting function that 
would more accurately describe the theoretical dc/dt 

TABLE 1 

Comparisons of different fitting methods on simulated data for single speciesa 

Properties of Simulated 
Species and Rotor Speed 

Results from fitting to 
g(s*) 

Results from fitting to 
dc/dt 

Results from direct 
boundary fitting using 

SVEDBERG 

s = 1.2 S; D = 13.5 Fb 

(~8 kDa) 
60000 rpm 

s = 1.079 S (-10.1%) 
D = 14.16 F (+4.9%) 
co = 1.145 (+14.5%) 

M/Mt
c = 0.857 (-14.3%) 

s = 1.191 S (-0.8%) 
D = 13.54 F (+0.3%) 
co = 1.003 (+0.3%) 

M/Mt = 0.990 (-1.0%) 

s = 1.199 S (-0.1%) 
D = 13.81 F (+2.3%) 
co = 1.010 (+1.0%) 

M/Mt = 0.977 (-2.3%) 

s = 2 S; D = 10 F  
(~18 kDa) 
60000 rpm 

s = 1.92 S (-4.0%) 
D = 9.59 F (-4.1%) 
co = 1.052 (+5.2%) 

M/Mt = 1.001 (+0.1%) 

s = 1.991 S (-0.5%) 
D = 10.11 F (+1.1%) 
co = 1.004 (+0.4%) 

M/Mt = 0.985 (-1.5%) 

s = 1.993 S (-0.4%) 
D = 9.97 F (-0.3%) 
co = 0.999 (-0.1%) 

M/Mt = 0.999 (-0.1%) 

s = 3 S; D = 7 F 
(~39 kDa) 
60000 rpm 

s = 2.947 S (-1.8%) 
D = 6.60 F (-5.7%) 
co = 1.023 (+2.3%) 

M/Mt = 1.042 (+4.2%) 

s = 2.995 S (-0.2%) 
D = 7.05 F (+0.7%) 
co = 1.003 (-0.3%) 

M/Mt = 0.991 (-0.9%) 

s = 2.995 S (-0.2%) 
D = 7.01 F (+0.1%) 
co = 1.000 (+0.0%) 

M/Mt = 0.997 (-0.3%) 

s = 5 S; D = 6 F 
(~75 kDa) 
60000 rpm 

s = 4.965 S (-0.7%) 
D = 5.56 F (-7.3%) 
co = 1.009 (+0.9%) 

M/Mt = 1.072 (+7.2%) 

s = 4.996 S (-0.1%) 
D = 6.04 F (+0.7%) 
co = 1.000 (+0.0%) 

M/Mt = 0.993 (-0.7%) 

s = 4.995 S (-0.1%) 
D = 6.03 F (+0.5%) 
co = 1.000 (+0.0%) 

M/Mt = 0.994 (-0.6%) 

s = 5 S; D = 6 F 
(~75 kDa) 
40000 rpm 

s = 4.910 S (-1.8%) 
D = 5.62 F (-6.3%) 
co = 1.024 (+0.9%) 

M/Mt = 1.048 (+4.8%) 

s = 4.991 S (-0.2%) 
D = 6.00 F (+0.0%) 
co = 1.000 (+0.0%) 

M/Mt = 0.998 (-0.2%) 

s = 4.990 S (-0.2%) 
D = 6.00 F (+0.0%) 
co = 1.000 (+0.0%) 

M/Mt = 0.998 (-0.2%) 

s = 6.2 S; D = 3.9 F 
(~144 kDa) 
45000 rpm 

s = 6.160 S (-0.6%) 
D = 3.60 F (-7.7%) 
co = 1.009 (+0.9%) 

M/Mt = 1.076 (+7.6%) 

s = 6.195 S (-0.1%) 
D = 3.92 F (+0.5%) 
co = 1.000 (+0.0%) 

M/Mt = 0.994 (-0.6%) 

s = 6.195 S (-0.1%) 
D = 3.91 F (+0.3%) 
co = 1.000 (+0.0%) 

M/Mt = 0.996 (-0.4%) 

s = 9.0 S; D = 5.5 F 
(~148 kDa) 
45000 rpm 

s = 8.945 S (-0.8%) 
D = 5.06 F (-8.0%) 
co = 1.008 (+0.8%) 

M/Mt = 1.080 (+8.0%) 

s = 8.994 S (-0.1%) 
D = 5.50 F (+0.0%) 
co = 1.000 (+0.0%) 

M/Mt = 0.999 (-0.1%) 

s = 8.993 S (-0.1%) 
D = 5.50 F (+0.0%) 
co = 1.000 (+0.0%) 

M/Mt = 0.999 (-0.1%) 
aIn all cases the simulated data (without added random noise) were evaluated at a time when the boundary had advanced to the 
midpoint of the cell, and the simulations were for a loading concentration, co, of 1. 
b1 F (Fick) equals 10-7 cm2s-1 
cthe mass ratio M/Mt is the ratio of the apparent mass to the true value that went into the simulation (based on s/D) 
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curves for individual species over a wide range of 
masses. One such approximate solution of the Lamm 
equation, the so-called modified Fujita-MacCosham 
function (7), was previously developed in our 
laboratory for use in whole-boundary analysis, and has 
been implemented and used in the velocity analysis 
program SVEDBERG.  This analytical function 
describes the concentration distribution across the cell 
at any time in the run, and is valid for all regions 
except near the base of the cell where solutes 
accumulate, at times after the meniscus is > 50% 
depleted. By taking its analytical time derivative (Eq. 3 
in Methods), one should therefore get an analytical 
form for dc/dt that should be valid under the same 
conditions. A Visual Basic program to compute dc/dt 
in this way was written and combined with a non-linear 
least square fitting routine to estimate s and D for up to 
five individual components in a mixture.In some cases 
it may be appropriate or necessary to deliberately use a 
time span that will cause peak broadening in order to 
obtain better signal/noise. This situation may arise, for 
example, in studying samples containing a broad 
distribution of species, because in order to obtain 
detectable boundary movement for the slowly 
sedimenting components the movement of the fast 
components is likely to be too large. In theory, for 
scans at constant time intervals increasing the number 
of scans used in the analysis, N, will improve the 
signal/noise of the g(s*) distribution approximately as 
N3/2. (The 3/2 exponent arises because the 
concentration difference !c grows approximately 
linearly with time, in addition to the statistical 
improvement by N1/2). However, in practice we have 
found that the error bars on the g(s*) distribution often 
do not improve with N nearly as much as expected, and 
may even grow larger as more scans are added 
(particularly in regions near the peaks of individual 
species). Further investigation has now revealed that 
this effect is, in part, a consequence of the fact that as 
the time span grows longer, radial dilution significantly 
reduces the amplitude of the dc/dt curves for individual 
scan pairs, leading to systematic variations among the 
curves being averaged, and this systematic effect can 
become quite significant compared to the random 
noise. To address this problem, an alternative method 
of averaging together the results from the individual 
scan pairs was developed, and this new algorithm is 
presented here and compared to the original procedure 
developed by Stafford. 

METHODS 

Sedimentation velocity data were obtained using 
absorbance scans at 280 nm in a Beckman Optima XL-
A analytical centrifuge. Numerical simulations of 
sedimentation velocity experiments were done using a 
Claverie finite-element routine, as described previously 
(7). In order to obtain high accuracy these simulations 
used 800-1600 radial points and time steps of 0.2-0.5 
seconds. The calculation of dc/dt and g(s*) 
distributions was done using a Visual Basic program 
named DCDT+ that implements the algorithms 
described by Walter Stafford (2) as well as the new 
algorithm described below.1 This implementation was 
compared to the DOS program DCDT supplied by the 
National Analytical Ultracentrifugation Facility and 
gives equivalent results. Non-linear least squares fitting 
employed a modified Gauss-Newton method, as 
described previously (6). Weight-, z-, and z+1-average 
sedimentation coefficients were calculated from the 
g(s*) distributions using the definitions 
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The uncertainties 's in these quantities were calculated 
from the standard deviations of the points in the g(s*) 
distribution, 'g, through standard propagation of error 
formulae, giving  

( )
( )

( )

22 22( 1) 1 2
2

2 4

( )

( ) ( )

n n n
g g

s n n

s ds s g s ds s ds

s g s ds s g s ds

# #$ ' $ $ $ $ ' $
' % #

$ $ $ $

& & &
& &

(2) 

where n = 0,1,2 correspond to sw, sz, and sz+1, 
respectively. 

An analytical expression for dc/dt that can be used in 
fitting 
The function used in fitting the dc/dt vs. s* data is the 
time derivative of the “modified Fujita-MacCosham 
function” (7), which is given by Eq. 3 (next page).  

An alternative algorithm to calculate ˆ ( *)g s  and the 
average dc/dt curve 

For calculating ˆ ( *)g s  the alternative algorithm first 
calculates a ˆ ( *)g s  curve from the dc/dt curve from 
each pair of scans using a procedure identical to that in 
the Stafford algorithm (2), including three rounds of 
iterative correction for the contributions of the plateau 

                                                   
1 The program description and instructions for 

downloading can be found at 
http://www.jphilo.mailway.com/dcdt+.htm. 
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region to dc/dt. Each of these individual ˆ ( *)g s  curves 
is then averaged together to compute the final average 
ˆ ( *)g s  distribution, with error bars calculated from the 

deviations among the curves used in computing that 
average. 

This final ˆ ( *)g s  distribution is then used to 
calculate a corresponding average dc/dt distribution. 
Because in general parts of the sedimentation 
coefficient range of the dc/dt data are excluded in 
calculating ˆ ( *)g s , in reversing the usual procedure 
some way of supplying the full range of the dc/dt data 
is needed. Hence the first step is to calculate a 
preliminary average dc/dt in the conventional way by 
interpolating the dc/dt curve from each pair of scans 
onto a uniform grid of sedimentation coefficients.  
Next, those data points in this average dc/dt curve 
beginning at s0, the lowest sedimentation coefficient 
covered by the ˆ ( *)g s  curve, and ending at the highest 
sedimentation coefficient included in the ˆ ( *)g s  curve, 
are replaced by back-calculating them from ˆ( *)g s  
using the formula: 

 
0

2ˆ ( ) ˆ( ) 2 ( )
s

s
m

dc s g ss s g s ds
dt t

$ * * *% # + $ $&  (4) 

where tm is the harmonic mean of the effective run 
times of all the scans and + is the rotor angular 

frequency. The integral on the right hand side of Eq. 4 
adds back the contributions to dc/dt from the plateau 
region for all species having sedimentation coefficients 
less than the value being computed. The error bar for 
each point that is computed by Eq. 4 is calculated by 
multiplying the error bar in ˆ ( *)g s  by s/tm, neglecting 
the very small contribution from the uncertainty of the 
integral term in Eq. 4. 

RESULTS 

As discussed earlier, it appeared experimentally that 
the accuracy of hydrodynamic parameters derived by 
fitting g(s*) curves obtained by the dc/dt method is 
compromised both when the mass is very low and the 
boundaries are very broad, and when the mass is 
moderately high and the boundaries are fairly narrow. 
To confirm this behavior noise-free data sets were 
produced by the Claverie finite-element method to 
simulate five globular proteins (f/fo < 1.2) with masses 
ranging from ~8 to ~150 kDa, plus a 145 kDa 
asymmetric protein (f/fo ~ 1.6) with properties similar 
to those of immunoglobulins. Ten scans spaced closely 
in time (to avoid any boundary broadening) from these 
simulated data were analyzed by the dc/dt method and 
the resulting g(s*) distributions fitted to a single 
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Equation 3, giving dc/dt for a single species with sedimentation coefficient s, diffusion coefficient D, 
loading concentration co at elapsed time t during a run at angular velocity +, where erf() is the error function, z 
is defined as 2s*+2t, and - and . are empirically-defined numerical constants (- = .2487, . = 2). 
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Gaussian function. The results tabulated in Table 1 
confirm that the diffusion coefficients, D, are in error 
by +4.9% to -8.0%, the sedimentation coefficients, s, 
by -10.1% to -0.7%, and the loading concentrations, co, 
by +14.5% to +0.8% over this range of proteins.   

The errors in both sedimentation and diffusion 
coefficients often have the same sign, and thus 
generally there is a compensation effect in computing 
the apparent mass, M, from s/D, except for the lowest 
mass species. Overall the errors in M range from -
14.3% to +8.0%.  For the ~75 kDa species simulations 
were run at two different rotor speeds, and this 
confirmed that the error in D and M is worse for the 
relatively sharp boundaries produced at 60000 rpm.  
Comparing the two differently shaped proteins with 
mass ~146 kDa shows that they give essentially 
equivalent errors; i.e., the errors appear to be a function 
of mass alone.  (Note, however, that the error size is 
fairly sensitive to the position of the boundary within 
the cell.) 

The results of applying this function to fit directly 
to the dc/dt data from the same simulated data sets are 
presented in Table 1. For purposes of comparison, 
these same scans were also fitted by whole boundary 
analysis using the program SVEDBERG (7), and these 
results are also shown in Table 1.  Fitting to dc/dt in 
this manner produces a 4 to 10-fold improvement in 
accuracy for s, D, and co relative to fitting g(s*) with 
Gaussians over the entire group of simulations, and the 
absolute accuracy of s, D, and M is always better than 
2%. Fitting to dc/dt gives accuracy comparable to, but 
slightly lower than, direct analysis using SVEDBERG. 

This new approach was also tested on the ~4.5 kDa 
peptide data shown in Fig. 1 for which the g(s*) data 
could not be analyzed. Fitting the dc/dt data gave the 
continuous curve shown in Fig. 1A and returned s = 
0.678 S [95% confidence 0.674 to 0.681] and D = 
13.89 [13.72 to 14.06] F.2 These values imply a mass 
that matches the sequence mass well within the ~4% 
uncertainty in mass arising from the ~1% uncertainty 
in the calculated partial specific volume. It is also 
worth noting that for such slowly sedimenting species 
the position of the maximum in the dc/dt curve does 
not give a reliable estimate of the true sedimentation 
coefficient. 

Use for multi-species fitting 
While this new approach appears to work very well 

for single species, there is potentially a serious problem 
in applying it to multi-species analysis. In the g(s*) 

                                                   
2 Abbreviations used: F, Fick, 1 F = 10-7 cm2s-1

 

distribution each species makes a contribution only 
over a finite range of sedimentation coefficients. In 
contrast, each species produces a dc/dt curve with a 
peak at the corresponding sedimentation coefficient, 
but also having a flat “tail” or “shelf” on the right side 
of this peak that remains constant and non-zero to s  = 
C. This tail arises from the contribution this species 
makes to the decrease in plateau concentration. This 
property of the dc/dt curves might make it rather 
difficult to resolve minor components in the presence 
of a more slowly sedimenting major component. 

To test the new approach several simulations were 
done of mixtures of a monomer with a small fraction of 
(non-interacting) dimer, for monomers having 
properties approximately like those of ovalbumin or 
immunoglobulin. The dc/dt and g(s*) curves were 
computed from closely spaced scans at a time in the 
run just prior to the disappearance of the plateau region 
(a time which gives optimal resolution) and then fitted. 
For these simulations a small amount of random noise 
was added to the simulated data, comparable to the 
intrinsic noise in the interference optical system. This 
amount of noise is sufficient to allow a comparison of 

Fig. 2. Fitting of the dc/dt data from a simulation for an 
ovalbumin sample containing 20% dimer (see Table 2). 
The lower panel shows the dc/dt data (circles) and the 
fitted curve (solid line). The g(s*) data from the same 
simulation are also shown (+) to illustrate the 
difference in the relative amplitude of the dimer signal. 
For the sake of clarity only every fourth data point is 
shown. The upper panel shows the residuals from the 
fit. 
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the relative precision of the parameters obtained, but 
produces an uncertainty small compared to the 
differences between the two methods. 

The results of the fits to these simulated data are 
presented in Table 2. The simulation of ovalbumin + 
20% dimer (Fig. 2) demonstrates that the ‘tail’ of the 
monomer peak in the dc/dt data does not interfere with 
resolving the dimer. Indeed, fitting to dc/dt gives 
results more than an order of magnitude more accurate 
than fitting to g(s*), and even the properties of the 
minor component can be resolved with better than 1% 
accuracy by fitting to dc/dt. It could be argued, 
however, that the superior results from fitting to dc/dt 
are a trivial consequence of the fact that because the 
dimer s value is 50% greater than the monomer value, 
the relative amplitude of the dimer signal is 50% 
stronger relative to monomer in the dc/dt data than in 
the g(s*) data, as can also be seen in Fig. 2. (Note, 
however, that the error bar on dc/dt at the dimer s value 

is also 50% greater so the signal/noise ratio for the 
dimer is identical in both sets of data.) 

Therefore a second simulation was done with the 
dimer fraction reduced to 13.33%, which makes the 
relative amplitude of the dimer signal in the dc/dt data 
correspond to the dimer amplitude in g(s*) for the 20% 
dimer simulation. Despite the lower amplitude, the 
accuracy of the dimer hydrodynamic parameters from 
fitting dc/dt is excellent, and still more than an order of 
magnitude better than the results from fitting g(s*) for 
the 20% dimer sample. Although the accuracy of the 
results from fitting dc/dt is much better, the precision 
of the two methods (the size of the error bars on fitted 
parameters) is quite similar (as expected since the 
signal/noise ratio of the dc/dt and g(s*) data is the 
same). 

As a further test of the ability to resolve minor 
components when the physical separation is poor, a 
simulation was done for a mixture of immunoglobulin 
with 20% dimer. Studies in our laboratory have shown 

TABLE 2 

Comparison of multi-species analysis of simulated data by fitting either g(s*) or dc/dt dataa 

Mixture 
Simulated 

Species 
Composition 

Results from Fitting g(s*) Data Results from Fitting dc/dt Data 

ovalbumin + 20% 
dimer;  60,000 
rpm; 30 scans 

s = 3.55 S 
D = 7.89 F 
co  = 0.80 

 
s = 5.325 S 
D = 5.918 F 
co  = 0.20 

 

s = 3.507 [3.506 to 3.508] S (-1.2%) 
D = 7.47 [7.43 to 7.51] F (-5.3%) 
co  = 0.822 [.820 to .824] (+2.2%) 

 
s = 5.326 [5.321 to 5.330] S (+0.0%) 
D = 5.03 [4.96 to 5.10] F (-15.0%) 
co  = 0.193 [.192 to .194] (-0.7%) 

s = 3.546 [3.545 to 3.547] S (-0.1%) 
D = 7.94 [7.89 to 7.98] F (+0.6%) 
co  = 0.801 [.799 to .803] (+0.1%) 

 
s = 5.324 [5.319 to 5.328] S (-0.0%) 
D = 5.93 [5.85 to 6.02] F (+0.2%) 
co  = 0.199 [.197 to .201] (-0.1%) 

ovalbumin + 
13.33% dimer; 
60,000 rpm; 30 
scans 

s = 3.55 S 
D = 7.89 F 

co  = 0.8667 
 

s = 5.325 S 
D = 5.918 F 
co  = 0.1333 

 

s = 3.508 [3.506 to 3.511] S (-1.2%) 
D = 7.49 [7.43 to 7.55] F (-5.1%) 

co  = 0.8901 [.887 to .893] (+2.7%) 
 

s = 5.343 [5.330 to 5.355] S (+0.3%) 
D = 4.82 [4.59 to 5.06] F (-18.6%) 
co  = 0.1248 [.122 to .128] (-0.9%) 

s = 3.547 [3.545 to 3.549] S (-0.1%) 
D = 7.92 [7.86 to 7.97] F (+0.4%) 

co  = 0.8671 [.865 to .870] (+0.1%) 
 

s = 5.327 [5.317 to 5.335] S (-0.0%) 
D = 5.90 [5.72 to 6.09] F (-0.3%) 

co  = 0.1322 [.130 to .135] (-0.1%) 

immunoglobulin 
+ 20% dimer; 
45,000 rpm; 16 
scans 

s = 6.20 S 
D = 3.9 F 
co  = 0.80 

 
s = 8.80 S 
D = 2.77 F 
co  = 0.20 

s = 6.164 [6.160 to 6.167] S (-0.6%) 
D = 3.62 [3.59 to 3.67] F (-7.2%) 
co  = 0.810 [.807 to .812] (+1.0%) 

 
s = 8.799 [8.793 to 8.805] S (-0.0%) 

D = 2.38 [2.33 to 2.44 F (-14.1%) 
co  = 0.198 [.196 to .200] (-0.2%) 

s = 6.197 [6.194 to 6.200] S (-0.1%) 
D = 3.92 [3.88 to 3.95] F (+0.5%) 
co  = 0.802 [.799 to .804] (+0.3%) 

 
s = 8.804 [8.798 to 8.810] S (+0.1%) 

D = 2.75 [2.69 to 2.82] F (-0.7%) 
co  = 0.200 [.198 to .202] (+0.0%) 

aThe data were evaluated at a time in the run just before the plateau region disappears, as the fastest species nears the cell base.  
Random noise of 0.001 r.m.s. amplitude was added to the simulated data. Values in square brackets are 95% confidence intervals; 
their absolute range reflects only the noise levels assumed, but their relative size is a measure of the resolution of the fitting 
methods. Values in parentheses indicate the percentage error (percentage of the total concentration for the concentration terms). 
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that immunoglobulins often form dimers with quite 
low sedimentation coefficients for their size 
(presumably because they have highly extended 
structures in solution), and consequently the 
sedimentation coefficient of such dimers is only ~40% 
greater than that of monomer. Again by fitting to dc/dt 
the results for both components are accurate to better 
than 1%, which is more than an order of magnitude 
better than is possible by fitting g(s*). It is also worth 
noting that for both fitting methods the presence of the 
dimer component has not significantly degraded the 
accuracy of values for the monomer, as can be seen by 
comparing these results to the corresponding noise-free 
simulation for monomer in Table 1. 

Therefore it appears that this new methodology 
works quite well for multi-species analysis. It should 
not, however, be concluded that potential problems 
arising from the “tails” on the dc/dt curves are non-
existent, and that fitting to dc/dt will be superior in all 
situations. A consequence of the fact that the dc/dt 
value at any particular s* value, s1, contains 
contributions from all species with s* < s1 is that a poor 
fit for any low s component will propagate to all 
species with higher s values. Thus if we are trying to 
study some faster sedimenting minor components, but 
the fit to the major, slower component is poor (perhaps 
due to unresolved heterogeneity), then the results for 

the minor components could be significantly 
compromised by uncertainty about the correct level of 
the “tail” contribution from the major component. In 
such a situation the g(s*) data may give superior 
results, because the contributions of the “tails” will 
have been removed in a way that is basically model-
independent rather than the model-dependent way 
inherent in fitting dc/dt to individual components. 

An alternative procedure for calculating g(s*) and the 
average dc/dt 

When studying samples containing both fast- and 
slowly-sedimenting species it is often the case in 
practice that in order to obtain good signal/noise for the 
slow species the time span of the scans will cause 
broadening of g(s*) peaks the for the faster, higher 
mass species. (Exactly how the time span affects this 
broadening will be addressed further below). In 
principle this boundary broadening does not pose 
problems in these cases, since for such heterogeneous 
systems there usually is no attempt to derive properties 
for individual species, and it is only the changes in 
species distributions and/or the overall weight-average 
sedimentation coefficient that are of interest. 
Surprisingly, however, in such situations the error bars 
on the g(s*) distribution for the faster species are quite 
large, and may actually increase as more scans are 

Fig. 3. Variation in the noise level of g(s*) distributions with the number of scans used in the analysis for a
highly polydisperse sample. For the sake of clarity the curves for 4, 8, and 12 scans have been successively 
shifted upward by 0.02 AU/Svedberg, and only every fifth data point from the distributions is shown. Panel A
shows the results using the original Stafford algorithm, while panel B uses the new algorithm described in the 
text. 
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used.   
This phenomenon is illustrated in Fig. 3, some data 

for a monoclonal antibody sample that became highly 
aggregated after exposure to high temperatures. In 
theory the average error bars should be successively 
reduced by factors of 2.83, 1.84, and 1.54 in going 
from 4 to 8, 8 to 12, and 12 to 16 scans, respectively. 
Clearly the actual reduction is far less than this in 
going from 8 to 12 scans, particularly over the region 
from ~14 to 24 S. In going from 12 to 16 scans the 
error bars actually slightly increase (although the data 
become smoother). This same phenomenon can also be 
seen in the standard errors of the weight-, z-, and z+1-
average sedimentation coefficients, sw, sz, and sz+1, 
computed from these distributions (Table 3), which 
increase rather than decrease as the number of scans 
grows beyond 8. 

Why doesn’t the uncertainty in the g(s*) 
distribution decrease in the predicted manner? The 
standard error for each point in the average dc/dt curve 
is computed as the standard error of the mean of the 
dc/dt values from each pair of scans, and then the SE 
of the corresponding point in the g(s*) distribution is 
calculated by the usual propagation of error 
procedures. Thus the underlying problem must be that 
deviations among the individual dc/dt curves are 
increasing as the time span increases. In fact this is 
true, and this can most easily be seen by again 
considering noise-free synthetic data. Fig. 4A 
illustrates the systematic changes in amplitude and 
shape of the individual dc/dt curves for a time span that 
would produce moderate broadening of the 
corresponding peak in g(s*). Also shown is the average 

curve along with its substantial error bars arising 
entirely from the systematic variation rather than 
intrinsic noise. 

These systematic changes in dc/dt are the result of 
two different phenomena: (1) an overall loss of 
amplitude with time due to dilution of the sample as 
sedimentation progresses, and (2) a narrowing of the 
curves with time as the relative influence of diffusion 
decreases. Is there a way to reduce these systematic 
effects? Eliminating the changes due to diffusion 
would require knowing the diffusion coefficients a 
priori and cannot be done in a model-independent way. 
There is, however, a fairly straightforward way to 
minimize the consequences of the different radial 
dilutions for different scan pairs, since compensation 
for the run time is incorporated into the normalization 
process in transforming from dc/dt to g(s*). The 
standard approach (2) is to first average the dc/dt 
curves, then transform to ˆ ( *)g s , and finally, if desired, 
to correct ˆ ( *)g s  to g(s*). A possible alternative 
approach is to transform the dc/dt curve from each scan 
pair into ˆ ( *)g s  and then average those data to produce 
an average ˆ ( *)g s  distribution. Fundamentally the 
difference between these two approaches is that the 
new algorithm uses the mean time for each scan pair 
during the transformations, rather than using an overall 
mean time for the whole group (which becomes a 
worse approximation as the time span becomes larger).  

Does this alternative algorithm actually help? Fig. 
4B shows the ˆ ( *)g s  curves from each scan pair as well 
as the average of those curves. With the alternative 
procedure the systematic differences consist of changes 

TABLE 3 

Variation in sw, sz and sz+1 with the number of scans used, for the data from Fig. 3 

Number of scans averages from the standard  
algorithm ± SE (Svedbergs) 

averages from the new  
algorithm ± SE (Svedbergs) 

4 sw = 18.365 ± 0.138 
sz = 22.023 ± 0.130 
sz+1 = 24.694 ± 0.168 

sw = 18.354 ± 0.134 
sz = 22.020 ± 0.119 
sz+1 = 24.694 ± 0.155 

8 sw = 18.377 ± 0.067 
sz = 22.051 ± 0.073 
sz+1 = 24.752 ± 0.089 

sw = 18.369 ± 0.044 
sz = 22.035 ± 0.040 
sz+1 = 24.730 ± 0.053 

12 sw = 18.468 ± 0.071 
sz = 22.189 ± 0.089 
sz+1 = 24.911 ± 0.109 

sw = 18.424 ± 0.025 
sz = 22.123 ± 0.022 
sz+1 = 24.830 ± 0.027 

16 sw = 18.705 ± 0.095 
sz = 22.537 ± 0.129 
sz+1 = 25.303 ± 0.167 

sw = 18.542 ± 0.027 
sz = 22.314 ± 0.026 
sz+1 = 25.052 ± 0.028 
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in peak width, resulting in good congruence among the 
curves along the sides of the peak, but substantial 
variation at the peak itself and near the base. Although 
this procedure certainly still leaves substantial 
systematic variations, nonetheless the net result is an 
overall reduction in variance, and the standard error of 
sw is reduced from ±0.019 down to ±0.010 by the new 
algorithm. Fig. 3B illustrates the significant 
improvement in the uncertainties of the g(s*) 
distribution obtained from a real experiment. The 
actual g(s*) distributions obtained from the two 
algorithms are very similar; the main effect of the new 
algorithm is to provide a better estimate of the error 
bars when the time span is long. The only real penalty 
from using the new algorithm is that it is more 

computationally intensive. The new algorithm requires 
roughly N/2 times more computational time than the 
standard computation, but with current desktop 
computers this extra computation is not at all 
prohibitive. 

This alternative algorithm can also provide an 
alternative means of calculating the average dc/dt 
curve and its error bars, for use in fitting to dc/dt. Once 
the average ˆ ( *)g s  distribution has been calculated via 
the new algorithm, it can be used to calculate a 
corresponding dc/dt curve by applying the reverse of 
the normal transform from dc/dt to ˆ ( *)g s , as detailed 
in Methods. As shown in Fig. 4A, the main effect is 
again to reduce the magnitude of the error bars, and for 
single species that effect is strongest along the steep 
portions of the dc/dt curves.  

As would be expected, the reduction in error bars 
by the new algorithm leads to lower uncertainties in 
fitted parameters for fits to either the dc/dt or g(s*) 
curves. The largest improvement is in defining the 
sedimentation coefficients and concentrations, with 
little effect on the diffusion coefficients. While this 
improvement in precision of s and co is 3-4 fold for the 
noise-free data shown in Fig. 4, for real experiments 
the improvement would probably be fairly small. 

Since weight average (and possibly z- or z+1-
average) sedimentation coefficients can be very useful 
in characterizing both ligand-induced assembly and 
self-associating systems (9-11), the quantitative effects 
of the new algorithm on these quantities for the real 
sample shown in Fig. 3 are detailed in Table 3. A 
systematic shift of sw, sz, and sz+1 toward higher values 
as more scans are used can be seen in Table 3. To 
confirm this behavior and assess the maximum 
accuracy attainable for these average quantities, a 
simulation was done for a mixture containing 8 species 
ranging from 6.2 to 30 S. This simulation was intended 
to mimic optimal signal/noise conditions for 
absorbance scans, and scanning of only a single sample 
at the maximum scan rate. As shown in Fig. 5, this 
simulation confirms that systematic errors are an 
inherent property of the values derived by time 
derivative techniques, and as the time span increases 
the systematic errors can significantly exceed the 
apparent precision of the averages. Over the range of 
scan numbers shown in Fig. 5 the systematic shifts in 
sw are quite small compared to those for sz and sz+1, but 
over still longer time spans sw also shifts to higher 
values in a systematic fashion. Under these optimal 
conditions the new algorithm provides no real 
advantages, but simulations confirm that when 
signal/noise is poor and long time spans are needed, 

Fig. 4. (panel A) Systematic deviations in the dc/dt
curves from individual scan pairs when the time span of
the data becomes moderately excessive. These were
derived from a simulation of a species with s = 5 S and
D = 6 F (~75 kDa) run at 40000 rpm using 8 scans
collected every 12.5 min. Also shown are the average ±
SE, calculated by both the standard algorithm and the
new algorithm presented here; both have been shifted
upward for the sake of clarity. (panel B)   curves for the
same four scan pairs. Also shown are the average ± SE
from both the standard and new algorithm, which have
again been shifted upward for the sake of clarity. 
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this algorithm does give lower error bars and a small 
reduction in the systematic errors for the various 
averages. 

Effects of using too many scans (peak broadening) 
As discussed in the introduction, in practice the use 

of time-derivative analysis generally requires a trade-
off between using more scans to improve signal/noise 
and a loss of accuracy due to peak broadening. Now 
that the intrinsic accuracy of these methods has been 
quantified, it is worth examining at what point this 

accuracy is compromised, whether this problem affects 
the results from fitting to dc/dt or g(s*) equivalently, 
and whether the accuracy differs when the distributions 
are computed using the conventional or alternative 
algorithms. Walter Stafford has proposed a “rule of 
thumb” (http://www.bbri.org/dcdt/Rule.pdf) to 
calculate the maximum time span between the first and 
last scan used in the analysis, !tmax, before substantial 
broadening occurs: 

 
( )max
160
RPM /1000

tt
M

$
! %

$
  (5) 

where t is the mean time between first and last scans in 
seconds, M is the mass in kDa, and RPM is the rotor 
speed. This formula assumes that the boundary is near 
the midpoint of the cell, a partial specific volume, v , 
of 0.725 ml/g, and a solvent density, D, of 1 g/ml.   

Since this maximum time span is directly related to 
sample mass, for a given set of scans this rule can also 
be used to calculate the maximum mass that can be 
present in the sample without significant broadening, 
Mmax: 

 
( ) ( )

2

max
160 0.375

RPM 1000 1 v
tM

t
2 3$

% 4 5! $ , $D8 9
 (6) 

The question then becomes a quantitative one of how 
large are the errors as the sample mass approaches 
Mmax? To investigate this question noise-free 
simulations were done to generate a large group of 
scans separated by constant time intervals, covering the 
period before and after the boundary reaches the 
midpoint of the cell. The number of scans used in the 
analysis was then increased upward from the minimum 
of four to systematically decrease Mmax; the additional 
scans were added to both the beginning and end of the 
group to keep the mean time constant. 

Fig. 6 summarizes the results of such an analysis of 
the errors in s, D, M, and co from simulations for a ~75 
kDa protein with s = 5 S and D = 6 F at 40000 rpm, 
and from fitting to either g(s*) or dc/dt. Panels A and B 
show the absolute errors in percent (relative to the true 
values that went into the simulation), using the Stafford 
algorithm to calculate dc/dt and g(s*) in panel A and 
the new algorithm in panel B. Panels C and D shows 
the errors relative to the values obtained when using a 
very narrow time span, which separates the effects of 
the time span from the issue of the absolute accuracy 
of these methods. These results show that the 
percentage error in s, D, M and co grows approximately 
linearly with the ratio M/Mmax up to a ratio of ~1 (the 
ratio which corresponds to just satisfying the “rule of 
thumb”). This approximate linearity means that for 
uniformly spaced scans the errors from broadening 

Fig. 5. Average sedimentation coefficients versus the
number of scans used in the analysis, obtained from a
simulation of a mixture of 8 species ranging from 6.2 to
30 S. The true values for the weight-, z-, and z+1-
average sedimentation coefficients are indicated by the
dotted horizontal lines in each panel. The vertical bars
indicate the size of a 3% deviation from the true value.
The data points are from g(s*) distributions calculated by
the standard algorithm; over this time span the results 
from the new algorithm are equivalent. The simulation
had a total loading concentration of 0.56 AU, scans
every 90 s, and 0.006 r.m.s. of added random noise. To
increase the total scans both earlier and later scans were
added symmetrically to keep the midpoint of the group 
unchanged. 
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grow proportionally to the square of the number of 
scans. As M/Mmax approaches or exceeds 1 the errors 
grow somewhat less rapidly, particularly for the error 

in M. The effects of a large time span are fairly small 
on s and co, producing errors of only a few percent 
when Mmax is comparable to M. In contrast, the errors 
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Fig. 6.  Variation in parameter errors with the time span (number of scans) used in the analysis (plotted versus the ratio of
true mass to Mmax as calculated using Eq. [6]). These results are from noise-free simulations of an s = 5 S, D = 6 F species
(~75 kDa) at 40000 rpm with scans recorded every 75 seconds. Analyses were done starting with 4 scans and adding scans
in groups of 4 (2 earlier, 2 later), up to a total of 92 scans. Panel A shows the absolute percentage errors (relative to the true 
parameters used in the simulation) from fitting to either dc/dt (open symbols) or g(s*) (closed symbols) with data derived
from the standard algorithm; panel B shows the absolute errors for the same scans when using the new algorithm. Panels C 
and D show the errors relative to the values obtained when using only 4 scans for the standard and alternative algorithms,
respectively. To reduce the vertical size of the graphs the sign on the errors in mass (s/D ratio) was inverted. 
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in D (and consequently M) are much larger, with the 
apparent D increasing by 14-17% and M decreasing by 
12-15% at M/Mmax = 1 when using the Stafford 
algorithm. The new algorithm gives only a very small 
improvement in the errors from fitting to g(s*), but 
reduces the errors in D from fitting to dc/dt by about 
1/3. 

Panels A and B also illustrate that although the 
absolute accuracy of the dc/dt fits is much better for 
small time spans, because fitting to g(s*) tends to 
underestimate the true D there is a compensation effect 
at moderately large time spans and the absolute errors 
in D and M from g(s*) fits are consequently quite small 
for M/Mmax ~ 0.4. 

The results in Fig. 6 strictly speaking only apply to 
this specific test case, and certainly the magnitudes of 
the absolute errors will vary substantially from case to 
case as was shown in Table 1. However, the relative 
errors in Fig. 6 should have similar magnitudes for 
other experiments, and the overall patterns of absolute 
and relative errors should also be similar. 

DISCUSSION 

Tests on both real and simulated data indicate that 
the new methods described here can provide some 
significant improvements, at least for certain situations 
and experiments. These approaches are best viewed as 
alternatives or supplements to, rather than 
replacements for, the methods pioneered by Walter 
Stafford. While fitting to dc/dt rather than g(s*) can 
theoretically improve accuracy by an order of 
magnitude, the analysis in Fig. 6 clearly shows that this 
improved accuracy requires strongly limiting the time 
span of the data. In practice this may mean that except 
for slowly sedimenting solutes (s < 2.5) such improved 
accuracy can only be obtained using interference scans. 
Another implication of Fig. 6 is that some caution is 
needed in applying time derivative methods to answer 
critical questions such as whether a pharmaceutical 
material is heterogeneous. 

Probably the most important lesson to be learned 
from Fig. 6 is that if absolute accuracy of D or M 
values from time derivative analysis is important, the 
best approach is to do a simulation that matches the 
actual experimental conditions in order to quantify the 
systematic errors and thereby obtain an appropriate 
correction factor. Since the whole boundary methods 
of analysis are not compromised by large time spans 
(and indeed are actually improved by them), another 
viable approach is to first use the time derivative 
methods to quickly provide an overview of how many 
species are present and to obtain good estimates of 

their properties, and then switch to whole boundary 
methods for the rigorous quantitative analysis. 

This issue of quantitative accuracy when fitting to 
individual species should not be allowed to obscure or 
overshadow the importance of time derivative methods 
for providing the overall distribution functions and 
average sedimentation coefficients in a model-
independent way. In studying complex interacting 
systems where individual species cannot be resolved, 
the average properties of the distribution may be the 
only available criterion for testing and evaluating 
assembly models, and changes in the overall shape of 
the distributions with concentration or added ligands 
can provide important insights into mechanisms. The 
alternative algorithm discussed here will hopefully 
provide some modest improvement in these 
applications. Recently there has been renewed interest 
in using z- or z+1-average sedimentation coefficients 
to characterize differences among related samples (11) 
and to help improve fitting of binding and assembly 
models. (9) The simulations done here (Fig. 5) suggest 
that an accuracy and precision of about 3% is 
achievable for sw, sz, and sz+1, but that when the 
primary purpose of the experiment is to define these 
average sedimentation coefficients the use of a large 
number of scans in an attempt to improve signal/noise 
is likely to be self-defeating. It should also be noted 
that for data from the interference optical system there 
is often some error or ambiguity in defining the zero 
level for the g(s*) distribution, and any overall shift 
upward or downward of the distribution will have a 
particularly large impact on the values for sz and sz+1. 
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