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a b s t r a c t

Brown and coworkers (Eur. Biophys. J. 38 (2009) 1079–1099) introduced partial boundary modeling
(PBM) to simplify sedimentation velocity data analysis by excluding species outside the range of interest
(e.g., aggregates, impurities) via restricting the sedimentation coefficient range being fitted. They strongly
criticized the alternate approach of fitting g(s⁄) distributions using similar range limits, arguing that (i) it
produces ‘‘nonoptimal fits in the original data space’’ and (ii) the g(s⁄) data transformations lead to gross
underestimates of the parameter confidence intervals. It is shown here that neither of those criticisms is
valid. These two approaches are not truly fitting the same data or in equivalent ways; thus, they should
not actually give the same best-fit parameters. The confidence limits for g(s⁄) fits derived using F statis-
tics, bootstrap, or a new Monte Carlo algorithm are in good agreement and show no evidence for signif-
icant statistical distortion. Here 15 g(s⁄) measurements on monoclonal antibody samples gave monomer
mass estimates with experimental standard deviations of less than 1%, close to the confidence limit esti-
mates. Tests on both real and simulated data help to clarify the strengths and drawbacks of both
approaches. New algorithms for computing g(s⁄) and a scan-differencing approach for PBM are
introduced.

� 2011 Elsevier Inc. All rights reserved.

Sedimentation velocity experiments can be quite useful for
measuring solution molar mass to identify the state of oligomeri-
zation of single proteins or the stoichiometry of multiprotein com-
plexes. In practice, however, protein samples often contain minor
components in addition to the species of interest such as irrevers-
ible aggregates, protein impurities, or ‘‘incompetent monomers’’
(improperly folded monomers that do not assemble in the normal
fashion). Although sophisticated data analysis methods now exist
that can model samples containing multiple components, and that
require no assumptions about how many components are present,
they have certain drawbacks. For example, the c(s) method [1] is
relatively robust and quick to compute, but the minor components
will affect the weight-average frictional coefficient ratio f/f0 that
best fits the whole sample; therefore, they will influence the
apparent molar mass of the main component. Two-dimensional
distribution methods such as c(s, f/f0) [2] and two-dimensional
spectral analysis (2DSA)1 [3] remove that drawback but are compu-
tationally quite intensive.

Thus, for answering important but relatively simple questions
such as ‘‘Is the native state of my protein really a tetramer?’’ it is
desirable to have a simple and rapid data analysis method that fo-
cuses on the major component and avoids explicitly modeling and
characterizing the minor species that are not of interest. One way
to do this is to limit the range of sedimentation coefficients being
considered in the fitting so that only the major component needs
to be modeled, and there are now two distinct approaches to
achieve this. One approach is to first transform the raw velocity
scans into the g(s⁄) distribution via time-derivative methods [4],
set the desired fitting range to exclude the high and/or low sedi-
mentation coefficient regions of the distribution (leaving the main
peak), and then fit this portion of the g(s⁄) distribution [5,6] as a
single component. Recently, Brown and coworkers [7] developed
an alternative approach where the sedimentation coefficient range
limits are imposed by fitting only a limited radial range of each
scan (a range that moves outward along with the boundary in suc-
cessive scans). This limited portion of the boundary is then fitted
by direct boundary modeling. They referred to this approach as
partial boundary modeling (PBM).

The PBM approach, in principle, allows including all of the scans
in the analysis and allows fitting the meniscus position, which the
g(s⁄) approach does not allow. Although it was argued by Brown
and coworkers that these constitute important advantages [7],
they did not directly test whether these properties significantly
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improve the accuracy or precision of the results. Furthermore, that
work strongly criticized the g(s⁄) fitting approach, stating that (i)
the data transformations used in calculating g(s⁄) strongly distort
the statistical properties of the fits and lead to gross underesti-
mates of the parameter confidence intervals, (ii) the results are
highly sensitive to minor differences in the scan subset used in
the analysis and other analyst choices, and (iii) it produces ‘‘nonop-
timal fits in the original data space,’’ implying that the results have
been significantly distorted by the g(s⁄) transformation. These
claims call into question the results from many of the more than
200 published studies that have used g(s⁄) analysis. However, none
of these claims appears to have been tested based on adequate
controls or by using data where the correct answers are known.

Therefore, one major goal of the current investigation was to
reexamine these issues and clarify the differences between the
PBM and g(s⁄) methodologies. As one part of that effort, a new algo-
rithm that allows Monte Carlo methods to be applied to g(s⁄) fitting
was developed. Results obtained from fits to simulations as well as
new experimental studies do not validate the existence of the g(s⁄)
fitting problems proposed in Ref. [7]. Furthermore, in the course of
comparing these two software approaches, some significant statis-
tical issues arising with the PBM method were uncovered, and
these new results also are inconsistent with some of the key
advantages claimed for the PBM method.

One significant drawback of calculating g(s⁄) via the time-deriv-
ative method [4,8] has always been the need to use only a rela-
tively small fraction of the scans (a limited range of boundary
movement) to avoid artificial broadening of the peaks in the g(s⁄)
distribution (loss of resolution). This is an important issue for this
context of trying to eliminate the influence of minor components
based on their sedimentation coefficients, but it appears that there
is some confusion [7] about whether the ‘‘improved’’ g(s⁄) fitting
algorithm [9] is intended or able to eliminate this drawback. Fur-
thermore, the major cause of this peak broadening effect has not
previously been discussed explicitly [4,6,8,9], and it is also highly
relevant to whether PBM and g(s⁄) fits can be directly compared.
Therefore, a second aim of this study was to clarify the origin
and significance of the peak broadening and to introduce a new
modification to the time-derivative algorithm that can reduce the
broadening and allow a broader range of scans to be used.

These studies indicate that the normal procedure in PBM anal-
ysis of removing the baseline variation across the cell by fitting the
time-independent noise (TIN) rather than by scan differencing, as
is done in g(s⁄) analysis, is a major source of the differences be-
tween these approaches and a major reason why the precision of
the mass estimates from PBM analysis appears to often be lower
than that from g(s⁄) fitting. Therefore, a new algorithm that allows
scan differencing to be used with PBM is also introduced and
briefly compared with conventional PBM using a fitted TIN.

It should be noted that the PBM, g(s⁄), c(s), c(s, f/f0), and 2DSA
analysis methods mentioned above all are treating reversible olig-
omers or complexes as a single independent species rather than
explicitly treating the reversible dissociation into monomers or
subunits. Such treatment is reasonable, and has been shown to give
the correct molar mass and stoichiometry, when the protein con-
centration is high enough that no significant dissociation occurs.
Some examples where g(s⁄) analysis has been used to determine
stoichiometry of reversible oligomers, with verification from sedi-
mentation equilibrium or other orthogonal approaches, can be
found in Refs. [10–14]. However, exactly what concentration is
high enough for this purpose has not, to our knowledge, been dis-
cussed previously, so a limited exploration of this issue is made
here. But clearly, at protein concentrations where there is substan-
tial interconversion of species during the separation, approximat-
ing a reversible complex as a single species will not be valid, and
in such cases the association equilibria must be explicitly modeled.

Materials and methods

The PBM fits were done using SEDPHAT version 6.5 [7]. The g(s⁄)
analyses were done using DCDT+ version 2.2.3 [9]. The whole
boundary fits using the new multisection algorithm for scan differ-
encing and with PBM restrictions on the sedimentation coefficient
range were done using SVEDBERG version 7.0 [15]. The trp RNA-
binding attenuation protein (TRAP) and bovine serum albumin
(BSA) simulations were created using SEDFIT version 11.3 [1].

The sedimentation velocity experiments on the monoclonal
antibody samples were run at 0.5 mg/ml and 35,000 rpm using
absorbance scans acquired every 4 min. The meniscus position
was fixed at the top of the meniscus spike (the mean of that posi-
tion for all of the scans in the run). The g(s⁄) distributions were cal-
culated using a subset of 16 scans starting at whatever time point
gave a distribution extending out to approximately 12 S. Those dis-
tributions were then fitted as a single species with the sedimenta-
tion coefficient range restricted to the central portion (between the
50% amplitude points) of the main (monomer) peak.

Results and discussion

Do the g(s⁄) data transformations cause significant underestimates of
the parameter uncertainties?

Brown and coworkers [7] asserted that the data transformations
used in generating g(s⁄) distributions cause serious distortions of
the fit statistics and lead to significant underestimates of the
parameter uncertainties. That conclusion was based in part on
their analyses of an sedimentation velocity (SV) data set for TRAP
complexes. TRAP has been shown to form 11-mer complexes
(91.6 kDa) [16,17]. This TRAP data set had previously been used
to illustrate an improved algorithm for fitting g(s⁄) distributions
[9]. The authors found that the confidence interval estimated for
their PBM fit of the TRAP experimental data using 12 scans starting
at scan 23 gave 95% confidence limits approximately 2-fold wider
than those reported previously for the corresponding g(s⁄) fit using
those same scans [9]. In addition, they concluded from their PBM
analysis using all 67 scans that this data set can determine the
mass of the main component only within ±2.4 monomer units at
95% confidence and, therefore, assumed that the ±0.4 monomer
units confidence interval from g(s⁄) fitting of only 12 scans must
be a gross underestimate. However, these PBM and g(s⁄) fits are
really not equivalent, and it is shown later that the confidence lim-
its from these two approaches are significantly different (both
were reported correctly).

Error surfaces for the TRAP experiment and simulation
Fig. 1A shows error surfaces for the mass parameter resulting

from fits of the TRAP data set. This protein reportedly primarily
forms 11-mer complexes [17], but this particular sample was not
of high quality (it was run at a workshop demonstration) and also
contains aggregates. The solid green curve shows results for a PBM
fit of all 67 scans as a single species using sedimentation coefficient
fitting limits of 4.39 to 6.28 S, which essentially reproduces Fig. 4d
from Ref. [7]. These results, as reported, indicate that by PBM the
best-fit stoichiometry is approximately 9.7 subunits and the 95%
confidence interval includes any stoichiometry between approxi-
mately 7.3 and 12.4 subunits. However, the error surface from
the g(s⁄) fit using only 12 scans starting with scan 23 (dashed blue
curve) [9] is much more strongly curved (much more sensitive to
changes in the best-fit mass). Although it would not be correct to
apply the same critical v2 limits used for the PBM fit (horizontal
green lines) to the g(s⁄) fit because the degrees of freedom are
not the same, it is quite clear that the error surfaces are
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qualitatively different and that the g(s⁄) fit appears to be much
more sensitive to the mass value and, thus, should have a lower
confidence limit.

But why is the PBM fit less able to define a unique mass even
though it uses many more scans, the opposite of what we might
expect? One important reason why the PBM error surface is broad
is that this is one consequence of removing the baseline variation
across the cell via fitting the TIN,2 which introduces hundreds of
additional fitting parameters into the analysis (up to �1600 param-
eters for interference scans). Because the computed TIN directly de-
pends on the hydrodynamic parameters, the TIN changes as the mass
is varied to construct the error surface, and those changes in TIN sub-
stantially reduce the increase in v2 that would otherwise occur. This
is demonstrated by the red dotted curve in Fig. 1A, which was com-
puted by holding the TIN fixed at the best-fit value while the mass
was varied.3 This comparison shows that fitting the TIN roughly dou-
bles the width of the confidence interval. Note that it is not being ar-
gued that holding the TIN fixed is the proper way to evaluate the
confidence interval for the PBM fit; the purpose of this exercise
was to try to parse out the effects of the differing approaches to
removing systematic noise. Note that broader confidence intervals
when the TIN is fitted were also observed in the original report of
this TIN removal algorithm [19].

Although fitting the TIN clearly is one important reason why the
error surfaces for the PBM and g(s⁄) surfaces are very different, is
the g(s⁄) result truly underestimating the parameter uncertainty
and, if so, is that a general property or something specific to this
experiment? An important difficulty with real experiments is that
we do not know the true properties of the sample or even whether
the noise in the raw data is actually random. Therefore, these ques-
tions are best addressed using simulated data where the noise lev-
els and the correct parameter values are known. Thus, this TRAP
experiment was simulated as a mixture of 11-mer plus 22-mer,
33-mer, and 44-mer in the proportions and at the sedimentation
coefficients obtained using the SEDPHAT hybrid-discrete model
in Ref. [9]. The random noise of 0.00358 optical density (OD) added
to these simulations corresponds to the root mean square devia-
tion (RMSD) reported in Ref. [7] for the PBM fit of scans 23–32,
the scans used for the original g(s⁄) fit in Ref. [9].

Fig. 1B shows error surfaces from fits of this TRAP simulation
corresponding to those from the experimental data in Fig. 1A.
These results show that the relative shift of the best-fit mass be-
tween the g(s⁄) and PBM results in Fig. 1A is indeed a specific fea-
ture of that data set, but the major difference in the curvature of
the error surfaces is not. The horizontal lines indicate the critical
v2 levels corresponding to 68.3 and 95% confidence levels for the
PBM and g(s⁄) fits. Those critical values are, of course, higher for
the g(s⁄) fit because the number of data points being fitted is low-
er,4 but nonetheless the confidence limits for the g(s⁄) fit are consid-
erably narrower than those for the PBM fit (±0.38 vs. ±1.61 subunits
at 95% confidence).5

New bootstrap and Monte Carlo estimates of parameter uncertainties
for g(s⁄) fits

A major drawback to estimating confidence intervals using F
statistics is that this requires assumptions about the statistical
properties of the data. The bootstrap method with replacement
[20] is an alternative approach for estimating confidence intervals
that avoids those statistical assumptions, and it has now been
implemented for g(s⁄) fits. In this approach, a new data set is cre-
ated by randomly choosing data points from the fitted region of
the g(s⁄) distribution. This new data set has the same total number

Fig.1. Changes in fit quality versus molar mass for fits of the TRAP experimental
data (A) and simulations of that experiment (B). The ratio of the v2 observed for
each mass was divided by the value observed for the best fit to give the normalized
v2 value. For each type of fit, the molar mass was fixed at various values over the
range shown, whereas the remaining parameters were reoptimized. The green solid
curves are for PBM fits using all 67 scans with sedimentation coefficient limits of
4.39 to 6.28 S, and the horizontal dotted and dashed green lines indicate the critical
v2 values corresponding to the 68.3 and 95% confidence levels, respectively,
calculated by SEDPHAT. The red dotted curves give the results for this PBM fit if the
TIN is held fixed at the values from the best fit rather than being reoptimized as the
molar mass is varied. The blue dashed curves show the results from fitting the g(s⁄)
distribution derived from scans 23 to 32 of the real data with sedimentation
coefficient limits of 4.39 to 6.28 S and a corresponding fit of the simulation. In panel
B, the thick vertical black line indicates the correct mass (the value used in the
simulation) and the blue horizontal dash-dot and dash-dot-dot lines show the
critical v2 values at the 68.3 and 95% confidence levels calculated by DCDT+. The
blue open diamonds and blue solid circles show the 95% confidence limits for the
g(s⁄) fit calculated using the bootstrap and Monte Carlo methods, respectively. The
open black triangles show the error surface for the PBM analysis when the first 28
scans are omitted from the fit, and the filled black squares give the results for that
fit when the meniscus is held fixed at the known value. (For interpretation of the
references to color in this figure legend and the text, the reader is referred to the
Web version of this article.)

2 The calculation of the TIN should properly be described as ‘‘fitting’’ the TIN.
Although it is true that separation of linear and nonlinear parameters [18] allows the
TIN to be calculated algebraically during each iteration of the fit, the elements of the
TIN vector are still fitting parameters and are not independent of the values of the
other fitting parameters.

3 The best-fit TIN was subtracted from each scan, and the resultant data were fitted
without TIN or offset.

4 Note that the number of data points in a g(s⁄) distribution depends on the
increment of sedimentation coefficient between successive points. In DCDT+, this
increment is chosen such that the number of points in the distribution approximately
matches the number of data points in the region of a raw scan that is used in
calculating g(s⁄).

5 Confidence limits as calculated by DCDT+ are not assumed to be symmetric
around the best-fit value, but to allow easier comparison with those calculated by
SEDPHAT, the difference between the upper and lower limits reported by DCDT+ has
been divided by 2 to give the equivalent ‘‘±’’ range.
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of data points as the original set, but the random selection means
that some points from the original distribution will be selected
more than once and others will not be selected at all (hence ‘‘with
replacement’’). This new data set is fitted, and this whole process is
then repeated many times to create a table of best-fit parameter
values. Finally, the observed standard deviation of the tabulated
parameter values from the bootstrap is used to estimate the confi-
dence limits. Applying the bootstrap method to the g(s⁄) fit of the
TRAP simulation (2000 rounds) gives 95% confidence limits of
10.75–11.33 monomer units, as shown by the blue open diamonds
in Fig. 1B. That is, this approach gives a somewhat narrower confi-
dence region than that from F statistics.

The bootstrap method, however, operates in the g(s⁄) data space
and, therefore, cannot directly address whether the g(s⁄) transform
itself is distorting the raw data in a way that leads to a significant
underestimate of the confidence interval, as hypothesized by Brown
and coworkers [7]. Therefore, a new approach that allows Monte
Carlo methods to be applied to g(s⁄) fitting has been implemented.
The ‘‘improved algorithm’’ for fitting the g(s⁄) distributions [9] al-
ways generates noise-free theoretical boundaries corresponding
to each raw scan (but without the TIN); thus, random noise can be
readily added to those noise-free boundaries to generate theoretical
g(s⁄) distributions where the noise was random prior to the trans-
formation. However, the standard Monte Carlo approach cannot
be applied here because the residuals from the g(s⁄) fit do not pro-
vide a direct and accurate measure of the noise level of the original
raw data. For fits of simulated data, this is not an issue because the
true noise level of the simulated raw scans is known. For real exper-
iments, it is possible to set the correct noise level for the Monte Carlo
simulations through the following iterative procedure: (i) the noise
in the raw data is estimated from the RMSD of the fit to g(s⁄) by
assuming that the noise in g(s⁄) varies inversely with the sedimen-
tation coefficient (the expected pattern if the noise in the raw data is
random); (ii) the estimated noise level is used for n rounds of Monte
Carlo simulations and fits and then the mean RMSD in g(s⁄) from
those Monte Carlo fits is compared with the RMSD of the experi-
mental fit; (iii) if the mean RMSD of the Monte Carlo rounds is too
far off from the experimental RMSD, the random noise for the sim-
ulations is scaled up or down based on the ratio of the Monte Carlo
to experimental RSMD values and the algorithm returns to the sec-
ond step (ii). This iterative process is simply continued until the
Monte Carlo RMSD matches the experimental one within some de-
sired precision. Two or three iterations is usually sufficient for a
match within a few percentage points, and for this TRAP fit an iter-
ation with 500 Monte Carlo rounds requires only approximately
30 s on a modern processor.

When this modified Monte Carlo algorithm is applied to the
TRAP simulation (using the known noise level of that simulation)
the result from 2000 rounds is 95% confidence limits for the mass
of 10.70–11.37 subunits (solid blue circles in Fig. 1B). Thus, these
values fall in between those from bootstrap or F statistics. Simi-
larly, the Monte Carlo runs for the corresponding fit of the real
experiment give 95% confidence limits of 10.67–11.36 subunits,
entirely consistent with the 10.7–11.4 limits that were originally
reported based on F statistics [9]. This proves that the g(s⁄) trans-
formation is not causing significant underestimates of the confi-
dence intervals for this experiment. Moreover, this Monte Carlo
analysis proves that the g(s⁄) distribution derived from only 12
scans does contain more than sufficient information to define the
stoichiometry (to determine the mass with precision better than
±0.5 subunit) at 95% confidence. It is also important to note that
the confidence limit estimates based on the statistical properties
of the transformed data (by F statistics or the bootstrap method)
are actually in remarkably good agreement with each other and
the Monte Carlo results considering that they derive from quite dif-
ferent statistical approaches.

Is the lower parameter precision (larger confidence interval) of
the PBM fits of the real and simulated data a general result or un-
ique to some feature of this TRAP experiment? To explore that is-
sue, a simulation was also done of the BSA experiment described
by Brown and coworkers [7]. The details of the minor component
content of that sample were not reported, but commercial BSA
preparations typically contain approximately 15% aggregates.
Therefore, this simulation assumed a BSA dimer content of 12%
and a trimer content of 3%, and this does give g(s⁄) and c(s) distri-
butions similar to those shown in Fig. 5 in Ref. [7]. PBM fits of this
simulation as a single species were done using scans 10 to 69
(matching the maximum scan range used in Ref. [7]) and with a fit-
ting range of 3.70–5.80 S (corresponding to the peak half-height of
the g(s⁄) main peak at the time the monomer has reached the mid-
dle of the cell). However, such fits were not successful if the menis-
cus position was fitted. Fit attempts using either the simplex or
simulated annealing fitting algorithms resulted in ‘‘invalid geome-
try or s, D parameters’’ errors. With the Marquardt–Levenberg
algorithm, no error messages occurred, but there was no true con-
vergence; a best-fit mass within a few hundred Daltons of the ini-
tial guess was returned for any initial guess between 32 and
82 kDa. By fixing the meniscus at the known position, it was pos-
sible to get reproducible convergence when using the simulated
annealing option, and that fit returns a best-fit mass of 67.68 kDa
(2.0% above the true value). Fig. 2A shows the error surface from
that fit (solid green line), which gives a 95% confidence interval
for the monomer mass of 57.9–78.1 kDa (�12.7% to +17.6% from
the correct value). Thus, although the PBM fit appears to give a
fairly accurate result (it is not biased significantly away from the
correct value), it is a result with rather low precision. For compar-
ison, a g(s⁄) analysis using only 14 scans (37–50) and fitting the
central half of the main peak returns 65.89 kDa (�0.7%) with a 5-
fold narrower Monte Carlo 95% confidence interval of 63.79–
67.80 kDa (�3.9% to +2.1%).

Once again, it appears that the broad error surface (low preci-
sion) of the PBM fit is largely a consequence of the strong variation
of the fitted TIN as the monomer mass value changes. Fig. 2B shows
some of the simulated scans (every third scan) and the actual re-
gions that were fitted. The heavy blue solid and green dashed lines
in Fig. 2B show the TIN values from fits with the mass held at either
the upper or lower 95% confidence limit. Both of these TIN curves
are significantly shifted away from zero (the correct value) at all
radii; the green curve is nearly constant at approximately
�0.0037 OD across the entire radial range, whereas the blue one
falls from approximately 0.005 OD near 6.1 cm to 0.0035 OD at
7.1 cm. These physically unrealistic TIN values allow the best-fit
concentration for the BSA monomer to deviate significantly from
the true value without a substantial increase in RMSD, which lar-
gely compensates for the nonoptimal mass. When the mass is at
the lower 95% confidence limit, the best-fit monomer concentra-
tion is 5.3% higher than the true value; when the mass is at the
upper limit, the best-fit monomer concentration is 4.7% lower than
the true value.

Experimental test of mass precision
To further test whether fitting the g(s⁄) distribution produces

significant underestimates of the parameter uncertainties, mass
estimates for the main component (monomer) were made from
15 data sets for a monoclonal antibody by fitting only the central
half of the main g(s⁄) peak (between the 50% height points). These
15 data sets cover five different manufacturing lots, each measured
in triplicate, which by c(s) analysis contain approximately 1–3% to-
tal aggregates and 0.5% antibody fragments. The correct partial
specific volume for this antibody and the solvent density are not
known, so the buoyant mass rather than the molar mass was com-
puted, and those values are summarized in Fig. 3. The mean of the
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15 mass estimates is 38.84 kDa with an experimental standard
deviation of ±0.34 kDa (a relative standard deviation of only
0.88%), which implies a 95% confidence interval of ±0.67 kDa (the
dashed red lines in Fig. 3). It is hardly surprising that this experi-
mental confidence interval is somewhat larger than the
±0.42 kDa estimated by the Monte Carlo simulations (the mean
of the 15 Monte Carlo estimates, 500 rounds each, shown as the
blue dotted lines). The mean confidence intervals from F statistics
of ±0.44 kDa, and from the bootstrap method (500 rounds) of
±0.52 kDa, are quite consistent with the Monte Carlo estimate
but again are also somewhat lower than the experimental value.
The key point is that the experimental confidence limit is actually
only approximately 30–60% larger than the statistical estimates

despite the fact that real experiments clearly will have significant
sources of error other than random photometric noise. Thus, these
real experiments do not support a conclusion that either the g(s⁄)
transformation itself or the specific choices of scan subsets or
meniscus position are significantly distorting the estimated
parameter precision, as was argued by Brown and coworkers [7].
These data also demonstrate that this approach gives precise and
reproducible results.

Variability of hydrodynamic parameters with scan selection,
sedimentation coefficient limits, or meniscus position

From their own g(s⁄) analyses of the TRAP experiment, Brown
and coworkers [7] correctly observed that the apparent stoichiom-
etry of the TRAP complex can vary significantly as a function of
analyst choices such as the subset of scans used in computing
the g(s⁄) distribution and with simultaneous changes in the range
of sedimentation coefficients included in the fitting and the posi-
tion of the meniscus. However, not all of those changes are unex-
pected or indicative of problems with this method. Furthermore,
their study did not include controls to distinguish which effects
are related to specific data analysis methods or analyst choices
and which are peculiarities of this specific experiment. To distin-
guish which of these effects are inherent to a data analysis method
and which might be specific to this particular experiment, it is
essential to use data where the correct answers are known.

Fig. 4A summarizes results for many different g(s⁄) fits of the
TRAP data using different selections for the subset of scans (earlier
or later in the run and using 8, 12, or 16 total scans) and with vari-
ations in meniscus position and the sedimentation coefficient range.
These analyses essentially reproduce Fig. 3b in Ref. [7], whereas
Fig. 4B shows the same fits but using the simulated data. A system-
atic drop in apparent mass does occur when the analysis uses scans
early in the run, but this is actually expected. The aggregates in the
sample are simply not resolved from the main component early in
the run; therefore, limiting the range of sedimentation coefficients
being fitted cannot fully exclude the aggregate influence on the

Fig.2. (A) Changes in fit quality (normalized v2 values) versus molar mass for a
PBM fit (range of 3.70–5.80 S) as a single species with a fitted TIN for scans 10 to 69
of a simulation of the BSA experiment at 50,000 rpm described by Brown and
coworkers [7]. The BSA sample was assumed to contain 85% monomer at
66.376 kDa and 4.58 S, 12% BSA dimer at 6.93 S, and 3% trimer at 8.52 S. The
loading concentration was 0.20 OD, the added root mean square noise was 0.002
OD, and scans were recorded every 3 min. The thick vertical black line indicates the
correct mass (66.376 kDa, the value used in the simulation). The dashed blue curve
gives the error surface for a similar fit but using only scans 34 to 69. The horizontal
dotted and dashed blue and green lines indicate critical v2 values corresponding to
the 68.3 and 95% confidence levels (as calculated by SEDPHAT) for the blue and
green curves. (B) Simulated scans (black points) and their portions included in the
PBM fit (red lines). Scan 10 and every third scan thereafter are shown. Also shown
as heavy green dashed and blue solid lines are the TIN profiles resulting from fits
with the mass held at the lower and upper 95% confidence limits, respectively. (For
interpretation of the references to color in this figure legend and the text, the reader
is referred to the Web version of this article.)

Fig.3. Estimated buoyant masses (black squares) from fitting the central half of the
main g(s⁄) peak for 15 samples of a monoclonal antibody (five different manufac-
turing lots, each measured in triplicate). The error bars on each point show the 95%
confidence limits from each fit estimated via Monte Carlo simulations (500 rounds).
The solid black horizontal line is the mean of the 15 measurements. The dashed red
lines show the experimental 95% confidence limits (based on the actual standard
deviation of the 15 observations). The dotted magenta, dash-dot green, and dash-
dot-dot cyan lines show estimated 95% confidence limits based on the mean of the
15 confidence intervals computed via F statistics, bootstrap, and Monte Carlo
analysis, respectively. (For interpretation of the references to color in this figure
legend and the text, the reader is referred to the Web version of this article.)
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results (see Fig. S1 in supplementary material). That is, the model
being fitted is inherently incorrect for the early scans, and if the data
analysis is properly sensitive to heterogeneity in the sample, the
inclusion of early scans should produce a mass estimate lower than
the true mass of the main component. A comparison of Fig. 4A and B,
however, shows that the mass drop when using early scans is signif-
icantly larger for the real experiment than with the simulated data,
so it appears that some additional factor is influencing this particu-
lar experiment.

For the real experiment, the significant drop in apparent mass
for fits using scans late in the run (starting after � scan 30) is an
unexpected feature. This pattern is totally absent in Fig. 4B, so
clearly this too represents a specific feature of this experiment.
These differences between the experiment and simulation might
indicate that this sample was not behaving as a simple mixture,
perhaps due to dynamic redistribution between different types of
complexes. Note also that the differences between results obtained
using 8, 12, and 16 total scans (black, green, and blue solid lines,
respectively) are significantly smaller for the simulation than in
the actual experiment.

Probably the most important point, however, is that the simula-
tion fits show that the stoichiometry is correctly determined by

g(s⁄) fitting over a fairly wide range of scan subset and other anal-
ysis choices. The simulation further clarifies that the ‘‘default’’ fit
starting with scan 23 uses scans only barely late enough in the
run for adequate resolution of the aggregates from the main peak.
Nonetheless, the correct stoichiometry is obtained for all of the fits
that use the default sedimentation coefficient limits and 12 or 16
scans starting at scan 19 or later. The stoichiometry is also correct
for all but one of those fits using only 8 scans (with only 8 scans,
the signal/noise ratio is insufficient to reliably define the stoichi-
ometry within ±0.5 subunit). The use of a narrower sedimentation
coefficient range together with a meniscus position shift of
�0.01 cm (downward-pointing triangles) still gives the correct
stoichiometry for all analyses starting at scan 11 or later. The use
of a much broader sedimentation coefficient range (4.03–6.91 S)
together with a meniscus shift of +0.01 cm (upward-pointing trian-
gles) does, however, give an incorrect stoichiometry (too low) in
nearly every case. However, that occurs because the upper limit
of 6.91 S does not sufficiently exclude the influence of the aggre-
gates (the simulated 22-mer is at 7.48 S). That is, these fits are cor-
rectly sensing that a single species is not sufficient to explain the
range of data that are being fitted, and the residuals do show sys-
tematic deviations for sedimentation coefficients P6.4 S.

Brown and coworkers [7] concluded from their analysis of the
TRAP data that the mass returned by the g(s⁄) fits has ‘‘a strong
dependence on small changes in meniscus.’’ This conclusion, how-
ever, was not based on adequate controls. In the analyses shown in
their Fig. 3b, changes in the assumed meniscus position were al-
ways coupled with simultaneous changes in the sedimentation
coefficient range being fitted, making it impossible to distinguish
the true influence of the meniscus position. Furthermore, because
the assumed meniscus position affects the apparent sedimentation
coefficients of all species, a controlled test of the meniscus effect
requires shifting the fitting range to keep it in the same position
relative to the main component’s peak in the g(s⁄) distribution;
otherwise, the minor components will shift in or out of the fitting
range as the meniscus position is changed. With this controlled ap-
proach, the apparent masses from the fits of the TRAP simulation
change by only ± 1% for changes of the assumed meniscus position
of ±0.005 cm (a region larger than the entire width of the meniscus
region in a typical absorbance scan). Thus, the meniscus uncer-
tainty has a minimal effect on the mass precision in real applica-
tions of this approach (probably much smaller than the effect of
uncertainty in the correct partial specific volume).

In summary, reproducible results giving the correct stoichiom-
etry can be obtained through the g(s⁄) approach over a fairly wide
range of data subsets and other analyst choices provided that the
analyst avoids (i) including the scans where the aggregates are
not yet separated from the main peak and (ii) choosing a sedimen-
tation coefficient range such that the aggregate contributions are
not excluded. That is, the g(s⁄) approach works well so long as
the analyst choices are appropriate to the goals of the analysis.

Do the g(s⁄) data transformations truly cause nonoptimal fits?

Brown and coworkers [7] attempted to directly compare PBM
fits of the TRAP experimental data with corresponding g(s⁄) fits
using either the subset of scans used for the ‘‘default’’ g(s⁄) fit or
a much larger group of scans (13–44). In both cases, their PBM fits
gave somewhat different mass and sedimentation coefficient val-
ues than the g(s⁄) fits, meaning that a PBM analysis that fixes s
and M at the best-fit values from the g(s⁄) fit will give a higher
RMSD than when those parameters are optimized in the PBM fit.
From these observations, the authors concluded that the data
transformations used in generating the g(s⁄) distribution lead to re-
sults that are ‘‘nonoptimal in the original data space.’’ However,
this conclusion is not valid because the comparison is not valid;

Fig.4. Dependence of the apparent molar mass from g(s⁄) fits of the TRAP
experiment (A) and simulation (B) with fitting limits of 4.39 to 6.28 S when using
different subsets of scans, starting with the scan number indicated on the abscissa,
for a total of 8 scans (dashed black curve), 12 scans (solid green curve), and 16 scans
(dotted blue curve). Also shown are the results for groups of 12 scans with a shift of
the assumed meniscus position by –0.01 cm and a narrower fitting range from 4.65
to 6.03 S (downward-pointing triangles) and with the meniscus shifted by +0.01 cm
and a wider fitting range from 4.03 to 6.91 S (upward-pointing triangles). The red
circle marks the conditions for the ‘‘default’’ fit using 12 scans starting at scan 23.
The thin black horizontal line indicates the mass from that fit, and the dashed
horizontal black lines are the 95% confidence limits for that fit obtained via 500
rounds of Monte Carlo simulation. (For interpretation of the references to color in
this figure legend and the text, the reader is referred to the Web version of this
article.)

194 PBM and g(s⁄) approaches revisited / J.S. Philo / Anal. Biochem. 412 (2011) 189–202



Author's personal copy

these fits are simply not equivalent, and there is no reason to ex-
pect that they should give exactly the same best-fit hydrodynamic
parameters. There are several reasons why PBM and g(s⁄) fits that
employ the same group of scans and sedimentation coefficient
ranges are not equivalent: (i) the approaches used for removing
the TIN are fundamentally different, (ii) the PBM fit is not actually
fitting the same portions (same radial ranges) of the scans that are
used in computing the g(s⁄) distributions, and (iii) the algorithms
used in calculating and removing the TIN lead to a different
weighting of the raw data between the g(s⁄) and PBM fits as well
as an artificially low value for the reported RMSD of the PBM fits.
Each of these three points also serves to illustrate important (but
often poorly understood) differences between these analysis algo-
rithms; therefore, they are explored in detail below.

Differences in systematic noise removal algorithms
One major reason why the PBM and g(s⁄) fits cannot be directly

compared is that they use fundamentally different approaches for
removing the TIN. The scan-differencing approach used in time-
derivative analysis removes the TIN arithmetically. This procedure
is essentially axiomatic; by definition, any baseline signals that are
constant in time (the same in every scan) will be exactly removed
by simple arithmetic when raw scans are subtracted in pairs. This
TIN removal occurs before the transformation to g(s⁄) and is totally
independent of any fitting model or its fitting parameters.

The alternate approach used in PBM is to explicitly include in the
fitting function an unknown baseline profile (an array of values cov-
ering the radial range over which raw data are being fitted) and to
optimize this TIN array during the fit. Similarly for interference
scans, the systematic vertical displacements between scans (radi-
ally independent noise [RIN]) can also be evaluated through an
additional set of fitting parameters (one displacement value per
scan). As demonstrated by Schuck and Demeler [19], it is possible
to separate the linear TIN and/or RIN fitting parameters from the
nonlinear hydrodynamic ones and to calculate the TIN and RIN alge-
braically between each iteration of the hydrodynamic parameters,
which greatly speeds the calculations. Nonetheless, the TIN and
RIN remain as fitting parameters, and they cannot be determined
independently from the other fitting parameters. Furthermore, this
procedure will converge to the true TIN (e.g., that obtained from a
solvent–solvent blank) only if the fitting model is perfectly correct
(if it completely and accurately describes the time-dependent sed-
imentation of all components that influence the range of data being
fitted). The nonequivalence of scan differencing and fitting the TIN
was also recently emphasized by Schuck [21].

The fundamental differences between these two approaches
automatically means that g(s⁄) and PBM fits are nonequivalent
and generally should not be expected to give the same best-fit
hydrodynamic parameters. Although one cannot directly compare
PBM and g(s⁄) fits for real experiments where the true TIN is un-
known, what happens for simulated data where the TIN is precisely
zero? For the default fit of the TRAP simulation, a PBM fit without
TIN or zero offset returns a mass of 10.88 subunits, whereas the
g(s⁄) fit returns a mass of 10.85 subunits. The next section shows
that these two fits are not using exactly the same data points from
the raw scans and, thus, the best-fit values should not necessarily
be identical. Nevertheless, if we substitute 10.85 subunits rather
than 10.88 in the PBM fit, the variance increases by only 0.012%,
far below the increase of 3.3% needed for statistical significance
at only 68.3% confidence. Thus, in the absence of the TIN removal
differences, there is no evidence that the g(s⁄) result is in any sig-
nificant way ‘‘nonoptimal in the original data space.’’

Nonequivalence of raw data ranges
A second major reason why the PBM and g(s⁄) fits are not di-

rectly comparable is that they are not really using the same regions

of the raw scans. When calculating g(s⁄) distributions via the time-
derivative method [4], the scans are first subtracted in pairs and
then the radial scale is transformed to a sedimentation coefficient
scale using the standard relation

S� ¼ 1
x2t�

ln
r�

rm
ð1Þ

where s⁄ is the sedimentation coefficient that will produce a bound-
ary at radial position r⁄ at elapsed run time t⁄ for angular velocity x
and meniscus position rm. A subtle but important point is that to
achieve removal of TIN, the scans must be subtracted before the
transformation to sedimentation coefficient space. However, apply-
ing this conversion after subtracting the scan pairs requires that a
single time t⁄ must be applied to both of the scans in the pair. In
contrast, for PBM the t⁄ of each individual scan is used when the
sedimentation coefficient range limits are converted to radial range
limits for each scan. In the standard Stafford [8] g(s⁄) algorithm, the
time assigned to each scan pair is the harmonic mean of the elapsed
times for the two individual scans in the pair.6 Alternatively, in sit-
uations where the scans span a large range of boundary movement
(much larger than is normally used for time-derivative analysis), it
can be advantageous to use the arithmetic mean rather than the har-
monic mean to reduce the peak broadening, and that is an option in
the DCDT+ program.

This difference in algorithms means that even when the sedi-
mentation coefficient ranges for PBM and g(s⁄) fits are the same,
the two fits are never derived from exactly the same data points
in the raw scans. When the subset of scans used for computing
g(s⁄) covers only a small range of boundary movement (the normal
case), the differences between the mean values for the scan pairs
and the actual elapsed times are small. However, when a large
range of scans is used (larger than is normally used for time-deriv-
ative analysis), this difference can become quite significant and, in
fact, this difference is also the major cause of the peak broadening
that occurs in such circumstances. A specific example will make
these points much clearer, and the analyses of TRAP scans 13–44
in Ref. [7] are used for this purpose. For the first scan pair (scans
13 and 29), the arithmetic and harmonic mean times are 36.1%
and 56.5% larger than the actual elapsed time for scan 13 and are
26.5% and 37.1% smaller than the actual time for scan 29, respec-
tively. It appears that the arithmetic mean option was used in
Ref. [7], so it is used for the remainder of this example.

Fig. 5A shows that for scan 13, there is a major difference be-
tween the true g(s⁄) distribution at that time in the run (the solid
black curve) and the version that results when the arithmetic mean
time is employed in its calculation (dashed blue curve), where
every s⁄ value is only 63.9% of the true value. Consequently, when
the fitting region of 4.39–6.28 S is applied (the heavier red region),
instead of a region roughly centered on the main peak (the desired
limits), the result is a region shifted far to the right side of the main
peak, where the data have substantial contributions from the
aggregates. Indeed, there is actually zero overlap between the ra-
dial portions of scan 13 that contributed to the fitted g(s⁄) data
in Ref. [7] and the portions that contributed to their PBM analysis
with the same fitting limits. Note too that the resolution of the
aggregates from the 11-mer at this early time in the run is poor,
so that even without the shifting effect, the limits of 4.39–6.28 S
would not be effective at excluding the contributions of the 22-
mer.

6 To account for the acceleration period of the rotor, it is really the value of the
integral

R t�

0 x2ðtÞdt (a value that is recorded with each scan) rather than x2t⁄ that is
used in Eq. (1) and in calculating the mean values applied to the scan pair. For
simplicity and brevity, however, this discussion uses ‘‘elapsed time’’ to mean the
effective time (i.e., the actual integral divided by the square of the final angular
velocity).
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As shown in Fig. 5B, the true distribution for scan 29, the other
scan in the pair, gets distorted in the opposite way. Thus, when the
fitting limits are applied, the result is data derived entirely from
the left side of the main peak. For this scan, there is a small overlap
(�16%) between the regions of the scan that would contribute to a
PBM fit and those that will contribute to the g(s⁄) fit. Fig. 5B also illus-
trates why the use of large subsets of scans (large ranges of boundary
movement) produces severe broadening of the peaks in the g(s⁄) dis-
tribution. When the contributions of scan 13 (the dotted blue curve
in Fig. 5B) get averaged with those from scan 29 (dashed blue curve),
the result would actually give a split main peak. However, when the
contributions from the other scan pairs get added, the net result is a
severely broadened main peak rather than a split one.

PBM fits can produce an unintended effect that some raw data points
have no influence on the results

A third important reason why PBM and g(s⁄) fits that use the
same scans and sedimentation coefficient ranges are nonequiva-

lent is that the fitting of the TIN during PBM has the unintended
consequence of weighting the raw data unevenly. Indeed, it turns
out that some of the data points from scans early in the run have
zero influence on the fit (their weight is zero), whereas others
have significantly less than full weight. This effect arises because
the sedimentation coefficient limits also severely limit the extent
to which the data from successive scans overlap in radius. There-
fore, at some radial positions, there may be very few scans (as
few as 1 scan) that contribute to determining the TIN for that ra-
dius. Such data points turn out to have little (or even no) influ-
ence on the fit.

This can be easily demonstrated by an example. Fig. 6A shows
the scans from the TRAP simulation in the region near the menis-
cus, with those data points that are actually included in a PBM fit
covering the usual range of 4.39–6.28 S marked as red diamonds.
Note that only a single data point from the first scan gets fitted
and that there is no radial overlap of the fitted regions until a par-
tial overlap occurs for the fourth (and later) scans. The red solid
lines in Fig. 6A and B show the fitted curves and residuals from a
PBM fit of all the scans. The fitted curves go exactly through those
data points where there is no overlap with other scans, and those
residuals are zero (within round-off error). The points shown as
green open circles and the dashed green lines show the results
for a refit after certain data points were manually shifted upward
by 0.15 OD (an arbitrary amount). The fit of the altered scans re-
turns the same fitting parameters and RMSD, and once again the
fit goes exactly through those altered data points. The same result
would be obtained no matter what OD is assigned to those partic-
ular data points; they have zero influence on the fit results. Most of
the other data points from the early scans also have less than nor-
mal influence on the fit, and their residuals are also suppressed be-
low the values expected from the random noise added to this
simulation, but those effects are not obvious by inspection of Fig. 6.

Why do these things happen? They are actually implicit in the
formula for calculating the TIN. If the RIN is zero (as is normally as-
sumed for absorbance scans), Eq. (7) from Ref. [7] for the TIN at the
radial position given by index j can be rewritten as

bj ¼
1

Mj

XMj

i¼1

ðyi;j � Fi;jÞ; ð2Þ

where Mj is the number of data points being fitted at that radial po-
sition, yi,j is the ith experimental data point being fitted at radial in-
dex j, and Fi,j is the total Lamm solution fitting function (the sum of
the theoretical boundaries for all of the species being fitted) for that
experimental point.7 Eq. (2) shows that the TIN at each radius is sim-
ply the mean value of the difference between the experimental point
and the theoretical boundary computed for all of the fitted points at
that radius. In other words, the TIN is chosen to make the mean
residual at each radius be zero.

This means that at any radial position where only a single data
point is being fitted, the residual should always be exactly zero.
That is indeed what is observed except that in practice there ap-
pears to be some round-off error, so the residuals are not always
precisely zero. Moreover Eq. (2) also implies that at any radial po-
sition where only a small number of points are being fitted, the ef-
fect of fitting the TIN is to significantly reduce the influence of such
points on the overall variance of the fit (such points have a less
than normal weight). To see this, using the notation of Eq. (2),
the formula for v2 becomes

v2 ¼
X

j

XMj

i¼1

½yi;j � ðFi;j þ bjÞ�2: ð3Þ

Fig.5. Illustration of the consequences of assigning a single mean run time to both
scans in a scan pair. This example uses the actual run times corresponding to the
first scan pair from Brown and coworkers’ [7] analysis of scans 13 to 44 of the TRAP
experiment, but this figure uses simulated data (the same simulation used for
Fig. 1B but without added noise). (A) The solid black curve shows the true g(s⁄)
distribution at the elapsed time of scan 13. The heavier red portion of that curve
marks the data within the range from 4.39 to 6.28 S (these are the points derived
from the same regions of the raw scan that would be used in PBM analysis with the
same fitting limits). The dashed blue curve is the result when the arithmetic mean
elapsed time from scans 13 and 29 is used to compute the g(s⁄) distribution for scan
13, which rescales the abscissa by a constant factor (and the vertical scale changes
as well to keep the area under the curve constant). The heavy solid red portion of
the dashed curve shows the portion between the fitting limits of 4.39 and 6.28 S. (B)
The solid and dashed curves correspond to those in panel A but apply to the other
scan in this pair, scan 29. When the mean time is used rather than the true elapsed
time, the true distribution (solid black) is scaled to higher sedimentation coeffi-
cients (dashed blue). The dashed blue curve from panel A is shown as a dotted line
to help illustrate why the net contributions of this scan pair to the final g(s⁄)
distribution will produce severe broadening of the peaks. (For interpretation of the
references to color in this figure legend and the text, the reader is referred to the
Web version of this article.)

7 In the notation of Brown and coworkers [7], Fi;j ¼
P

kckLðkÞi;j .
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Differentiating with respect to any single data point yij, substituting
@bj=@yi;j ¼ 1=Mj, and rearranging gives

@v2

@yi;j
¼ 2ðyi;j � Fi;j � bjÞ 1� 1

Mj

� �
: ð4Þ

This shows that for any point where Mj = 1, the derivative vanishes
identically (that point has no influence on the least squares fit), but
it also implies that when Mj is a small number, fitting the TIN will
cause those points to have significantly less influence on the fit.
Consider the increment to v2 contributed by all the points at radius
index j, Dv2

j :

Dv2
j ¼

XMj

i¼1

ðyi;j � Fi;j � bjÞ2: ð5Þ

After substituting Eq. (2) and rearranging, this can be written as

Dv2
j ¼

XMj

i¼1

ðyi;j � Fi;jÞ2 �
1

Mj

XMj

i¼1

ðyi;j � Fi;jÞ
" #2

: ð6Þ

The first sum on the right side in Eq. (6) is simply the v2 increment
that would occur if the TIN were not subtracted. Because the

squared sum in the second term must be positive, the effect of fit-
ting the TIN is always to reduce the net increase in v2. The inverse
dependence on Mj for the second term means that this reduction is
relatively large when Mj is small but goes asymptotically to zero as
Mj becomes large (as the number of overlapping scans becomes
large). For PBM fits, it will always be true that the overlap of the
boundary between successive scans is much less early in the run,
meaning that fitting the TIN will always give data points from the
early scans a lower weight relative to the late scans.

The number of data points with zero or low weighting becomes
especially large when using an 8-hole rotor for absorbance scans.
For a new simulation of the TRAP experiment assuming that 7 cells
in an 8-hole rotor were scanned (increasing the scan interval by 7/
3), when the first half of the run was fitted by PBM, 67 of the 347
total data points have residuals that are always zero. The RMSD of
this fit is returned as 0.002612 OD, far below the value of 0.003580
OD that should be observed (the true noise added to the simula-
tion). Clearly, this side effect of fitting the TIN with PBM fits can
seriously distort the fit statistics (the difference between the ob-
served and expected RMSD values is statistically significant with
P < 10�7). More important in the current context, the different
effective weighting for different data points is yet another reason
why PBM and g(s⁄) fits are inherently different and should not nec-
essarily give the same best-fit hydrodynamic parameters.

Although Brown and coworkers [7] did state that for PBM fits it
is important to have overlapping scans, and that at least two scans
must contain data at each radius for fitting the TIN, they did not
apply that rule in their analyses of the TRAP data. Furthermore,
even if the early scans are excluded to ensure overlap, it is still true
that fitting the TIN greatly reduces the effective weight of points
for which the number of scans is low, and that important conse-
quence has not been described previously.

With respect to weighting of data points, it should be clarified
that the g(s⁄) fits are in fact normally weighted fits (and should
be). The data transformations cause the g(s⁄) points at low sedi-
mentation coefficients to have a higher uncertainty than those at
higher sedimentation coefficients. That systematic effect is prop-
erly accounted for by the default weighting, which assumes that
the intrinsic noise in the raw scans is independent of radial posi-
tion. The need for weighted fits can be avoided, if desired, by fitting
directly to the dc/dt data rather than g(s⁄) [6].

To conclude this section, it has been shown that there are three
independent reasons why ‘‘equivalent’’ g(s⁄) and PBM fits are actu-
ally not equivalent and, therefore, the best-fit parameters from one
approach should not be optimal in the other. Each approach is
‘‘nonoptimal’’ in the other’s data space, and each is correct for its
own.

PBM fits can give physically unrealistic estimates for the TIN that
distort the results

The PBM fits for this study also reveal that the computed TIN of-
ten becomes physically unrealistic (i.e., it deviates significantly
from the scans that were recorded after all components have sed-
imented past that position). This is especially true at low radii,
where the TIN values are being derived from early scans. Fig. 7A
shows three different estimates for the TIN from the TRAP experi-
ment. The green solid curve is an average of the last 20 scans (48–
67) over the region out to 6.75 cm where the cell had already been
depleted of all protein. That is, the green curve is essentially a mod-
el-independent experimental TIN covering the region below
6.75 cm. The red dashed curve is the TIN computed for the PBM
fit of all 67 scans, which clearly deviates significantly from the
green curve. The deviation of this TIN from the actual scans at
times after the cell is empty can also be seen in Fig. 4a of Ref.
[7]. The blue dotted curve is the TIN computed from the hybrid-

Fig.6. Effects of fitting the TIN for nonoverlapping data points. (A) The small black
filled squares show scans taken from the TRAP data simulation used in generating
Figs. 1B and 4B. The red open diamonds show the data points that are included for a
PBM fit of all 67 scans using fitting limits of 4.39 to 6.28 S, and the red solid lines
show the actual fitted curves from that fit (for the first scan, only a single data point
is included in the fit, so that point is shown as a diamond). The green open circles
represent an alternate data set where the points that do not overlap with other
scans (those radial positions for which only a single data point is included in the fit)
were arbitrarily shifted upward by 0.15 OD (only the shifted points are shown; the
other data points in this alternate data set are identical to the squares or diamonds).
This alternate data set was also fitted by PBM analysis, and those fitted curves are
shown in dashed green. (B) The residuals from the fits of the normal and alternate
(certain points shifted) data sets are shown as solid red and dashed green lines,
respectively. (For interpretation of the references to color in this figure legend and
the text, the reader is referred to the Web version of this article.)
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discrete model fit of all scans in Ref. [9], which is in good agree-
ment with the solid green curve at the radii covered by both. These
seemingly subtle differences in the TIN can have a substantial im-
pact on the analysis results. For example, for the PBM analysis of
scans 13–44 discussed in Ref. [7], if the TIN from the hybrid-dis-
crete model fit is used rather than the best-fit TIN, this changes
the best-fit mass from 10.50 to 11.89 monomer units.

Why does a PBM fit give a TIN that differs from an experimental
baseline or the TIN computed from a model that considers all spe-
cies and uses all scans? The key point is that the purpose of the
PBM fit is to try to exclude the influence of species that are present
in the sample but are not of interest. However, that means that the
PBM model is fundamentally an incorrect description of the sam-
ple, and if it fails to sufficiently exclude the influence of the other

species, there will inevitably be systematic deviations between the
data and the fit. Fig. 7B shows the residuals that result from mod-
eling a noise-free version of the TRAP simulation as a single species
by PBM using (i) the sedimentation coefficient range of 4.39–6.28 S
from the default g(s⁄) fit, (ii) the actual main peak (11-mer) param-
eters from the simulation, and (iii) a TIN fixed at zero (the correct
value). The nonzero residuals clearly show that the PBM limits are
not able to completely exclude the effects of the aggregates, espe-
cially for the early scans (where the aggregates are not yet resolved
from the main boundary). Thus, a correct fit of these data should
not return exactly the true mass of the 11-mer; some portion of
the true heterogeneity of the sample remains in the data being fit-
ted, and so that heterogeneity should result in an estimated mass
that is lower than that of 11-mer. If these same noise-free data
are fitted by PBM allowing fitting of the TIN, however, the returned
mass estimate is 11.04 subunits, slightly above the correct value,
and the TIN that is returned (shown as Fig. 7C) is a physically
unreasonable spiked or sawtooth pattern (and definitely not the
known value, zero everywhere). This patterned TIN does succeed
at mostly removing the systematic residuals that arise from the ex-
tra species; it reduces the maximum residual approximately 4-fold
and decreases the RMSD more than 2-fold. That is, the extra de-
grees of freedom provided by the TIN substantially reduce the sen-
sitivity of the fit to the fact that the model does not account for all
of the species that are actually present.

Does including the early scans or fitting the meniscus position
significantly improve the results of PBM fits?

Two other points emphasized by Brown and coworkers [7] were
that the ability to include all of the scans in a PBM analysis and also
to include the meniscus position as a fitting parameter are impor-
tant advantages over fitting g(s⁄) distributions. However, the model
PBM analyses of their BSA experiment (Fig. 5 in Ref. [7]) never in-
cluded all of the scans and did not show any substantial improve-
ment in accuracy for a fit using scans 10–69 versus one using only
scans 58–69. Furthermore, they did not investigate whether inclu-
sion of all scans significantly improves the precision of the fitted
parameters for either the TRAP or BSA experiments. In fact, as
shown by the open black diamonds in Fig. 1B, PBM fits of the sim-
ulated TRAP data show no difference in the shape of the error sur-
face between fits using only scans 29–67 (after the main boundary
had reached the midpoint of the cell) versus the fit using all of the
scans (the solid green curve). That is, the inclusion of the first half
of the run does not produce a sharper minimum in the error sur-
face. Furthermore, the error surface for this scan fit (29–67) is vir-
tually unchanged whether the meniscus position is included as a
fitting parameter or held fixed at the known position (filled black
squares). This shows that fitting the meniscus position improves
neither the accuracy nor the precision of the fitted mass. Con-
versely, it shows that even when no early scans are included, the
additional freedom associated with allowing the meniscus position
to float is also not significantly detrimental to the precision of the
mass determination.

Similarly, the PBM fits of the BSA experiment simulation also
provide no evidence that inclusion of all the scans improves the re-
sults. The dashed blue curve in Fig. 2A shows the fit quality profile
for a fit using only scans 34–69 (starting from the time the mono-
mer has reached the midpoint of the cell). Because the number of
fitted data points is lower, the critical v2 levels are, of course,
slightly higher for this fit than for the fit using scans 10–69 (solid
green curve). However, because the minimum is actually some-
what sharper for the fit using fewer scans, the width of the 95%
confidence intervals is nearly identical (total range of 20.2 kDa
for scans 10–69 and 20.4 kDa for scans 34–69).

Fig.7. (A) Estimates of the TIN for the TRAP experiment. The green solid curve is the
average of the last 20 scans (out to 6.75 cm), the red dashed curve is the TIN derived
from the PBM fit of all 67 scans, and the blue dotted curve is the TIN derived from
the hybrid-discrete model fit of all 67 scans. (B) Residuals resulting when a noise-
free simulation of the TRAP experiment is fitted by PBM (range of 4.39–6.28 S with
the TIN held at zero) as a single species with the known (as simulated) values for
the main component. (C) The TIN computed from a single-species PBM fit (range of
4.39–6.28 S with the TIN floated) of the same noise-free simulation used for panel B.
(For interpretation of the references to color in this figure legend and the text, the
reader is referred to the Web version of this article.)
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A modified time-derivative algorithm can limit the g(s⁄) peak
broadening when a large range of boundary movement is used and can
improve the isolation of specific species of interest

There is no dispute that the peak broadening of g(s⁄) distribu-
tions derived from a large range of boundary movement is a limit-
ing factor for fitting g(s⁄) distributions of samples containing
multiple species. This drawback can also make it difficult to ana-
lyze samples containing a relatively large range of sedimentation
coefficients. It appears, however, that there is some misunder-
standing about whether and when the ‘‘improved algorithm’’ for
fitting g(s⁄) distributions [9] should reduce or eliminate this draw-
back [7]. For samples containing only one species, this algorithm
does make the peak broadening irrelevant, but for multispecies
samples, the peak broadening will still have a negative impact on
the ability to resolve multiple components, as was explicitly stated
and illustrated in Ref. [9].

In practice, however, limiting the range of boundary movement
to avoid substantial peak broadening is often not a significant
drawback. The results from the g(s⁄) fitting of the TRAP simulation
(Fig. 5B) demonstrate that the peak broadening can easily be kept
low enough such that the correct stoichiometry is obtained and
that nonetheless the signal/noise ratio is high enough to define
the stoichiometry within ±0.5 subunit for a fairly broad range of
scan subset choices. The 15 antibody measurements (Fig. 3) also
show that a mass estimate with a relative standard deviation be-
low 1% can be obtained using only 16 scans (giving no significant
peak broadening for species below �350 kDa).

Is there a way to reduce the peak broadening in those situations
where it is significantly limiting? Fortunately, a range of boundary
movement large enough to cause substantial broadening also in-
creases the signal/noise ratio of the scan difference curves, and that
in turn permits a new alternate approach to calculating dc/dt
where the signal/noise ratio is traded off for increased resolution
(lower peak broadening).

In the standard dc/dt algorithm where, for example, a total of 16
scans are being analyzed, scan 9 is subtracted from scan 1, scan 10
is subtracted from scan 2, . . ., and scan 16 is subtracted from scan
8. This differencing pattern results in scan differences with the
highest signal/noise ratio, but it is not an intrinsic requirement of
this approach. If instead these 16 scans were first divided into 2
continuous sections, and the usual pattern then applied to each
of those 2 sections, one could pair the scans as follows: (5, 1)
(6, 2) (7, 3) (8, 4) (13, 9) (14, 10) (15, 11) (16, 12). This alternate
pairing will reduce the maximum time difference between the
scans in a pair by 2-fold and can reduce the peak broadening ef-
fects by as much as 4-fold [6], but at a penalty of a 2-fold reduction
in the signal/noise ratio of the resultant g(s⁄) distribution. Impor-
tantly, this alternate pairing retains the property that each scan
is used only once, avoiding the statistical issues that arise for some
other differencing patterns that were proposed recently [21]. This
sectioning process could continue down to a minimum of 4 scans
per section. This approach is not restricted to even numbers of sec-
tions and can be applied to arbitrary total numbers of scans, but in
the general case one section will have a larger number of scan pairs
than the rest of the sections. In such cases, it is advantageous to
group scans such that the section with the most scans is the last
one (highest scan numbers) because peak broadening will be least
important for that group.

Fig. 8 illustrates applying this new approach to a broad range of
scans from the TRAP experiment (13–44), a group that was also
analyzed in Ref. [7]. The standard g(s⁄) one-segment distribution
shows extensive broadening of the main peak, resulting in very
poor resolution of the main peak from a shoulder caused by the
aggregates sedimenting at approximately 7.5 and 8.6 S. By visual
inspection, it seems obvious that the fitting limits of 4.39–6.28 S

(the vertical dashed lines in Fig. 8) will not succeed in isolating
the properties of the main peak from the shoulder of aggregates,
so it is not surprising that the single species fit returns a mass of
8.6 monomer units rather than 11 [7]. Note too that for this case
the DCDT+ program displays a ‘‘peak broadening limit’’ (the
approximate mass above which the peaks will be significantly
broadened [9]) of only 8.8 kDa (an order of magnitude below the
11-mer mass). However, with this new algorithm, the peak broad-
ening can be substantially reduced for the same scan selection. The
main peak sharpens significantly in going to 2 and then 3 sections,
but there is little further improvement in going from 3 to 4 sections
or going from 4 to 6 sections. Going to 8 sections only further de-
grades the signal/noise ratio. At 4 sections, the peak broadening
limit (the lowest value for any of the 4 sections) has been increased
to 77 kDa (roughly 9-mer), consistent with the limited sharpening
of the main peak from going beyond 4 sections. Although using
multiple sections clearly does help, the resolution of the aggregates
from the main peak is still never good because ultimately it is lim-
ited by the fact that the aggregates were not yet resolved from the
main peak at the time of the earliest scans included in this group.
Consequently, a fit of the TRAP simulation using 4 sections with
scans 13–44 gives a mass of 10.90 subunits,�1% below the true va-
lue. Importantly, this multisection approach does give the correct
stoichiometry, and with sufficient precision to exclude other stoi-
chiometries (Monte Carlo 95% confidence of 10.63–11.17 sub-
units), from a very broad range of scans that otherwise gives
quite poor results.

Using scan differencing with PBM

This multisection algorithm for scan differencing also makes
possible a new approach to removal of TIN for PBM fitting.
Although scan differencing has been used for TIN removal in whole
boundary fitting for many years in the programs SVEDBERG [15]
and SEDANAL [22], applying sedimentation coefficient limits to
the difference data is usually not possible when the standard sin-
gle-section scan pairing is used. The only radial points that can
be differenced in each scan pair are those for which the partial
boundaries overlap. Good overlap requires that the boundary has
not moved very far between the scans being differenced, especially
when the sedimentation coefficient limits are narrow. However,
for whole boundary analysis, the full range of boundary movement
is typically used in the analysis, and with the standard differencing

Fig.8. g(s⁄) distributions from scans 13 to 44 of the TRAP experiment with this
group of scans divided into different numbers of sections. The dashed vertical lines
indicate the fitting limits of 4.39 to 6.28 S that were applied in Brown and
coworkers’ [7] analysis of this group of scans. The inset shows an expanded view of
the top of the main peak.
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pattern this means that the boundary has moved nearly half the
length of the cell between the two scans being subtracted; hence,
there is no overlap of corresponding regions in both radial and sed-
imentation coefficient space. The multisection differencing pattern
greatly increases the overlap, and that algorithm has now been
implemented for PBM analysis in the program SVEDBERG. Using
multiple sections, unfortunately, creates a penalty of lower sig-
nal/noise ratio for the difference data, just as in g(s⁄) analysis. Fur-
thermore, the requirement for radial overlap means that the
effective sedimentation coefficient limits are actually somewhat
more restricted than the desired values for one scan or the other
in each pair. More sections increase the overlap, so more difference
points remain in the fit, but those points will have a lower signal/
noise ratio.

To illustrate this alternative approach to PBM fitting, it has been
applied to the BSA simulation discussed previously. A fit exactly
analogous to the PBM fit with TIN using SEDPHAT (Fig. 2) was done
using scan differencing with 10 sections (6 scans each). That fit
gives a BSA monomer mass of 67.71 kDa (2.0% above the correct
value), and Monte Carlo analysis using the known noise level of
the simulation gives 95% confidence limits of 65.18–69.20 kDa
(�1.8 to +4.3%). Thus, this scan-differencing approach to PBM fit-
ting gives similar accuracy to PBM done with SEDPHAT, but the
alternate approach to handling TIN removal has reduced the mass
uncertainty 5-fold (and has given a precision equivalent to that of
the g(s⁄) fit using 14 scans). Although a similar fit using 6 sections
rather than 10 sections gives scan differences of higher magnitude,
the lowered overlap between scans yields fewer net data points in
the fit, and the precision of the fitted mass is essentially the same.

General discussion

Advantages and drawbacks of the PBM approach

Some significant advantages proposed for the PBM approach,
according to Brown and coworkers [7], are that it ‘‘allows the inclu-
sion, without drawbacks, of all available scans’’ and also ‘‘allows
one to use very large or entire data sets without drawbacks. This
is unbiased and statistically optimal.’’ Those claims, however, are
not consistent with the findings here or, indeed, with the author’s
stated requirements of the method.

First, it is not always possible to use all available scans when the
meniscus position is fitted. As mentioned earlier, when scans very
early in the run are included, attempting to fit the meniscus posi-
tion often results in error messages. Presumably, this is why the
PBM fits of the BSA experiment in Ref. [7] never included scans ear-
lier than scan 10. Second, when the TIN is being fitted, the inclu-
sion of scans very early in the run inevitably leads to the
problem of data points that have zero weight (Fig. 6) as well as
substantial numbers of data points that are significantly under-
weighted (as shown by Eq. 6). These effects consistently led to
PBM fits of simulated data giving an RMSD significantly below
the true noise level in the simulations.

It is true that PBM fits can include a larger fraction of the scans
than g(s⁄) fits even when the latter uses the new multisection ap-
proach. And clearly, the use of all or most of the scans seems to be
statistically preferable in theory. However, it was never actually
demonstrated that in practice inclusion of all the scans does pro-
vide a significant advantage. The tests done here (Figs. 1B and
2A) indicate that inclusion of the scans prior to the time when
the main boundary reaches the middle of the cell in the PBM anal-
yses does not significantly improve either the accuracy or the pre-
cision of the fitted parameters. One reason why early scans have
relatively low influence on PBM fits is simply because they contrib-
ute few data points (see Figs. 2 and 6), and the statistical weighting
issues uncovered here reduce their impact even further.

The PBM approach also can give very broad minima in the error
surface (such as those shown in Figs. 1 and 2A). Those broad error
surfaces led Brown and coworkers [7] to conclude that ‘‘it is appar-
ent the data [the TRAP raw data] simply do not have the informa-
tion to determine the oligomer size.’’ However, that conclusion is
not consistent with (i) any of the three different approaches to esti-
mating the parameter precision for the ‘‘default’’ g(s⁄) fit of 12
scans or (ii) the results from the new 4-section g(s⁄) fit covering
scans 13–44, (iii) the results from the g(s⁄) fits of the TRAP simula-
tion (Figs. 1B and 4B), or (iv) the earlier hybrid-discrete model
analysis using all of the scans [9]. That is, the statistical properties
of the PBM approach led to an incorrect conclusion that the data
were inadequate to answer the question being posed.

These broad error surfaces are also a major reason why PBM fits
often show poor convergence. Brown and coworkers [7] them-
selves described the error surface for their scan 13–44 PBM fit of
the TRAP data as ‘‘ill-defined’’ and noted the poor convergence.
When this same fit was repeated here, but instead using the simu-
lated annealing method to find the minimum, a reproducible con-
vergence was obtained; interestingly, however, that fit produced a
lower RMSD than was reported (0.00470 vs. 0.00474 OD) and the
best-fit stoichiometry shifted from 9.7 to 10.7 subunits. All of the
observations discussed in this section seem to be inconsistent with
the claims for a ‘‘statistically optimal’’ method.

Brown and coworkers [7] further stated that ‘‘the key advantage
of the PBM approach is that it naturally allows . . . all unknowns to
be included into the analysis.’’ Clearly, the ability of PBM to fit the
meniscus position can be useful and will often result in fits with a
lower RMSD, and the inability to fit the meniscus position is indeed
a drawback of g(s⁄) analysis. But it has not been demonstrated that
in practice fitting the meniscus produces results that are more
accurate or more precise either for PBM fits [7] or for whole bound-
ary analysis in general. Fig. 1B shows that fitting the meniscus has
no significant influence on the determination of the mass even
when no early scans are included in the analysis and, therefore,
the meniscus position is poorly constrained. Fitting the meniscus
position does indeed provide a direct way to evaluate the influence
of the meniscus position on the other parameters. However, it is
also straightforward to evaluate whether the results from g(s⁄) fits
are highly sensitive to the chosen meniscus position by manually
varying the value over a physically realistic range and refitting,
and such testing gave changes in the apparent mass of only 1%
for the TRAP simulation.

Moreover, a fundamental problem arises for any method that
simultaneously fits the meniscus position while also trying to re-
strict the range of sedimentation coefficients being fitted. Clearly,
the meniscus position strongly affects the apparent sedimentation
coefficient associated with each radial position (Eq. 1). Thus, in
principle, during PBM analysis, as the meniscus position is varied
during fitting iterations, the actual raw data being fitted should
also change to keep the sedimentation coefficient range constant.
Such readjustment of the fitted data after each iteration is, how-
ever, not compatible with standard least squares fitting algorithms
and is not actually implemented for PBM analysis. In practice, the
lack of such readjustment of the raw data ranges probably has only
a small effect on the final results but, at a minimum, makes it dif-
ficult to reproduce the same raw data range (the range will depend
on the initial value assumed for the meniscus position, not the final
best-fit value).

Although Brown and coworkers [7] stated that PBM allows
automatic evaluation of the effect of all important parameters
and analyst choices on the fitting results, in fact it cannot evaluate
how the choice of the sedimentation coefficient range to be fitted
changes the outcome. That sedimentation coefficient range is
manually preselected for both the PBM and g(s⁄) approaches, and
a poor choice (e.g., one that fails to exclude the contributions of
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the unwanted species) will adversely affect the results for either
approach. For g(s⁄) fitting, the width of the peak provides a natural
guide for making this range selection and directly shows the qual-
ity of the separation, and the antibody data in Fig. 3 prove that the
approach of using the 50% peak height to pick the fitting range does
give consistent results. On the other hand, no such guidance for
range selection is provided by the PBM approach.

Fitted TIN versus scan differencing

With respect to removal of baselines, Brown and coworkers [7]
argued that (i) fitting the TIN is superior to scan differencing be-
cause the ‘‘pairwise subtraction method is more permissive to
small drifts (since the first pair does not need to have the same
TI noise as the last pair)’’ and (ii) fitting the TIN and scan differenc-
ing ‘‘have similar degrees of freedom (or ‘model dependence’).’’
This first claim is simply illogical; by definition TIN must be the
same in every scan (and, therefore, in every scan pair), and by def-
inition a drift over time is not time independent.

The second claim is readily disproved. Fitting the TIN requires,
at a minimum, hundreds of fitting parameters, and can require
up to �1600 parameters for interference scans. Removal of the
TIN via scan differencing requires none, and the result of the differ-
encing is completely fixed once the scans are recorded and the scan
subset is selected. Figs. 2B and 7A directly demonstrate this funda-
mental difference between fitting the TIN and removing it via scan
differencing; the fitted TIN changes as the fitting parameters
change, leading to changes in the net signal (the data to be mod-
eled by the Lamm equation solutions). In contrast, the net data cre-
ated by scan differencing are constant and independent of any
fitting model; in particular, they remain constant during evalua-
tion of the error surface for the fitting parameters. That is the basis,
and the specific meaning, of statements here and in Ref. [9] that
scan differencing is ‘‘model independent,’’ whereas fitting the TIN
is ‘‘model dependent.’’ The recent exploration of this issue by
Schuck [21] used a different meaning for ‘‘model dependence’’
and gave no results that contradict the meaning used here.

Both this study and Ref. [21] agree that the two approaches to
baseline removal will produce different error surfaces for the
hydrodynamic parameters. However, the conclusion that scan dif-
ferencing will always result in larger parameter uncertainty than
directly fitting the TIN [21], which was based on a model of fitting
data to straight lines rather than fitting actual velocity data or sim-
ulations, seems to be contradicted by several results presented
here, including those from the new multisection scan-differencing
approach for PBM fits as well as from g(s⁄) fits. There is no dispute
that scan differencing always imposes a statistical penalty because
the differenced data have a somewhat higher noise level. However,
using the differenced data avoids the statistical penalties associ-
ated with needing to explicitly determine the baseline profile
and the hundreds to thousands of extra fitting parameters needed
to do so. In the specific case of PBM fits, the situation for fitting the
TIN is substantially different from that in standard whole boundary
analysis because (i) the ratio of total fitting parameters to total
data points in the fit is much higher for PBM and (ii) the number
of scans contributing to the TIN computation at each radius is sub-
stantially less (by an order of magnitude in many cases). For PBM
fits, determining the TIN appears to often be a rather ill-condi-
tioned problem, and in practice the statistical penalty associated
with fitting the TIN appears to be substantially higher than that
associated with scan differencing.

Inherent limitations of fitting a small portion of a boundary

A fairly high cross-correlation between the fitted concentration
and the fitted mass appears to be an inherent drawback to fitting a

fairly restricted portion of a boundary either directly through the
PBM approach or via the transformed g(s⁄) distribution. For exam-
ple, for the ‘‘default’’ g(s⁄) fit of the TRAP simulation, both the fit
covariance matrix and the Monte Carlo simulations imply a
cross-correlation coefficient of �0.88. Therefore, any fitting ap-
proach that makes the zero reference for the concentration less
certain (e.g., a baseline offset parameter or fitted TIN and/or RIN)
will tend to lower the precision with which the mass can be deter-
mined. Brown and coworkers [7] also noted that an inability to de-
fine the loading concentration is a ‘‘potential pitfall’’ of PBM fits
that use a sedimentation coefficient range that is too narrow. How-
ever, they did not explore the impact of using a fitted TIN on the
ability to define the concentration or the coupling of that concen-
tration uncertainty to the precision of the fitted mass. The results
presented here (especially in Fig. 2B) suggest that these factors
play a major role.

The need to have a well-determined concentration to obtain a
well-defined mass from these partial boundary fits may present
serious difficulties for experiments using interference scans where
the zero concentration reference varies from one scan to the next.
Some limited tests using the TRAP or BSA simulations indicate that
fitting RIN in addition to TIN for those PBM analyses would signif-
icantly decrease the precision of the mass determination. For g(s⁄)
analysis, the RIN is usually removed by aligning the fringes at a ra-
dius where nothing is sedimenting, and this also may lead to some
uncertainty in the true zero reference. Therefore, some further
assessment of the reliability of both PBM and g(s⁄) analyses with
interference data (actual experiments rather than simulations) is
probably needed.

Application to reversible associations

Although sedimentation velocity has been widely used to deter-
mine the stoichiometry of tightly associated oligomers and multi-
component complexes, there has been little explicit discussion of
what ‘‘tightly associated’’ means or how to experimentally test
whether the concentration is high enough that the sample can be
approximated as a mixture of independent components (i.e., the
reversible dissociation can safely be ignored). Because this situation
represents a major application for the g(s⁄) and PBM approaches dis-
cussed here, it is highly pertinent to briefly discuss this issue.

Simulations of rapidly reversible monomer–octamer and mono-
mer–dimer systems were conducted and analyzed by g(s⁄) fitting
(see Supplementary material for detailed results and figures). In
summary, those simulations indicate that the correct stoichiometry
can be obtained (error <0.5 subunit) whenever the loading concen-
tration is at least 50-fold higher than the concentration where the
monomer and oligomer are equimolar. Under such conditions the
sedimentation coefficient of the oligomer is determined with accu-
racy of better than 1.5% for octamer or better than 4% for dimer.

Usually, however, the experimenter will not know the dissocia-
tion constant and must run a dilution series to show that the sample
is behaving essentially as a mixture (approximately independent of
concentration). The simulations indicate that the results at the high-
er concentration will be reliable (correct stoichiometry) when a 3-
fold dilution produces a decrease in the apparent mass of the oligo-
mer of less than 10% and a reduction in its sedimentation coefficient
of less than 0.3%. Although these results apply specifically to g(s⁄)
analysis, the situation for other data analysis approaches should
be similar.

Conclusions

Overall, it is clear that the PBM and g(s⁄) approaches both have
drawbacks as well as strengths. Hopefully, the additional informa-
tion from this study will help analysts with method selection and
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interpretation of the results and also will clarify a number of issues
that apply much more broadly to sedimentation velocity data anal-
ysis methods. The new algorithms introduced here also augment
and expand the capabilities of both the g(s⁄) and PBM methods.
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